

Driving Innovation in Crisis Management for European Resilience

D42.21 - Specification documentation and

deployment of the prototype and final

integration platform

Grant agreement number: 607798

Start date of the project: 2014-05-01

Duration: 54 months

Due date of deliverable: M11

Actual submission date: 2015-06-30

Lead Beneficiary: ATOS (Jaime Martín, German Herrero and Ignacio Llamas)

Contributing beneficiaries: DLR (Julia Zillies)

 FRQ (Gerhard Zuba, Thomas Obritzhauser)

 GMV (Héctor Naranjo, Raúl Valencia)

 JRC (Daniele Galliano, Francesco Mugnai)

 TCS (Bruno Quere, Edith Felix, Laurent Dubost)

Keywords:

Architecture, portfolio of tools, requirements, experiments, integration, interoperability, SOA,

Operational environment, interfaces, Common Information Space

Dissemination level:

PU ☒

PP ☐

RE ☐

CO ☐

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 2 June 2015

Release History

Version Date Description Release by

V0.1 1-May-2015 Initial Version / Table of Contents ATOS

V0.2 12-May-2015 Agreed Table of Contents ATOS

V0.3 2-June-2015 Content incorporated from ATOS, FRQ and

GMV

ATOS

V0.4 12-June-2015 Some updated in structure and content ATOS

V0.5 15-June-2015 Updates in contents from partners ATOS

V0.6 22-June-2015 First version ready for review ATOS

V1.0 30-June-2015 Final Version ATOS

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 3 June 2015

Table of Contents

Executive Summary ... 8

1 Introduction ... 10

1.1 Introduction and Purpose ... 10

1.2 Scope ... 10

1.3 Document Structure .. 11

2 SOTA of standards and technologies ... 12

2.1 Introduction ... 12

2.2 Information and Communications Technologies .. 12

2.2.1 Service Oriented Architecture (SOA) ... 12

2.2.2 Enterprise Service Bus (ESB) .. 13

2.2.3 Web-services ... 13

2.2.4 Simple Object Access Protocol (SOAP) .. 14

2.2.5 Representational State Transfer (RESTful) .. 14

2.2.6 JavaScript Object Notation (JSON) .. 15

2.2.7 eXtensible Markup Language (XML) .. 16

2.2.8 Windows Communication Foundation (WCF) ... 17

2.2.9 Resource Description Framework (RDF) ... 17

2.3 Crisis Management Standards and Technologies.. 18

2.3.1 Recommendations ... 21

3 Integration Platform ... 23

3.1 Selected Technologies and Standards ... 23

3.1.1 Service Oriented Architecture and related ICT ... 23

3.1.2 Distribution Element (EDXL DE) ... 23

3.1.3 Tactical Situation Object (TSO) .. 23

3.1.4 Common Alerting Protocol (CAP) .. 24

3.1.5 GIS Standards .. 25

3.2 Portfolio of CM tools ... 25

3.3 Architecture Requirements ... 28

3.4 Common Architecture Description .. 31

3.4.1 CIS, Common Information Space ... 31

3.4.2 Common Information Space Architecture Options ... 34

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 4 June 2015

3.4.3 Common Information Space Supporting Tools ... 36

3.4.4 Background from other projects ... 39

4 Experiments ... 41

4.1 EXPE 40: Enhanced contribution of airborne sensors ... 41

4.1.1 Objectives .. 41

4.1.2 Experiment Description ... 41

4.2 EXPE 41: Operational Data Lift .. 44

4.3 EXPE 42: Interaction with citizens and volunteers .. 46

4.3.1 Expe 42 goals ... 46

4.3.2 Expe 42 set-up ... 48

4.3.3 Expe 42 information space .. 48

4.4 EXPE 43: From Planning to Tasking ... 48

4.4.1 Components Services .. 48

4.4.2 Implementation Description ... 50

4.5 EXPE 44: Enhanced logistics .. 51

4.5.1 Components Services .. 51

4.5.2 Implementation Description ... 52

4.6 EXPE 45: Situation assessment and Crisis dynamics ... 53

4.6.1 Tools .. 54

5 Conclusion .. 58

Annex 1 SOA .. 60

SOA Architecture ... 60

SOA Architectural Constraints .. 60

Interfaces ... 61

Messages .. 61

RESTful Web Services ... 61

Architecture Based on SOA .. 62

Services Visibility .. 64

Services Capabilities ... 64

Bibliography ... 65

References ... 66

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 5 Public

List of Tables

Table 1: Interoperability Standards ___ 19

Table 2: Summary of Standards Evaluation __ 21

Table 3: CM Tools TRL ___ 28

Table 4: Architecture Requirements __ 31

Table 5: EXPE 40 Data Flow ___ 44

Table 6: EXPE 41 data flow ___ 46

Table 7: EXPE 42 Integration of tools ___ 48

Table 8: Contribution of services for coordination and cooperation and structured command and control ____ 49

Table 9: EXPE 45 Tools ___ 56

List of Figures

Figure 1: Portfolio of tools: preliminary classification __ 26

Figure 2: CIS Adaptor architecture ___ 32

Figure 3: Socrates CSS architectural approach __ 35

Figure 4: Office 365 Security Control __ 37

Figure 5: Cyris functional view ___ 37

Figure 6: Ingest based Common Information Space adaptor ___ 38

Figure 7: ODYSSEY Security Architecture Methodology ___ 39

Figure 8: EXPE40 Data Exchange___ 42

Figure 9: EXPE 41 Operational Data Lift ___ 45

Figure 10: EXPE42 Crisis Communication __ 47

Figure 11: EXPE42 volunteer management __ 47

Figure 12: EXPE 43 SoS architecture __ 51

Figure 13: EXPE 44 involved tools __ 52

Figure 14: EXPE 44 Logistics Experiment ___ 53

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 6 Public

List of Acronyms

Abbreviation /

acronym

Description

ANSSI AgeŶĐe NatioŶale de la SĠĐuƌitĠ des SǇstğŵes d͛IŶfoƌŵatioŶ ;FƌaŶĐeͿ

CAP Common Alerting Protocol

CEK Content Encryption Key

CIS Common Information Space

COP Common Operational Picture

CM Crisis Management

CSA CoŶseil SupĠƌieuƌ de l͛Audioǀisuel ;FƌaŶĐeͿ

CSS Common Shared Services

DE Distribution Element (EDXL standard)

DM Disaster management

ERCC Emergency Response Coordination Centre

ECML European Crisis Management Laboratory

EDXL Emergency Data Exchange Language

ESB Enterprise Service Bus

FIPS Federal Information Processing Standard

FTP File Transfer Protocol

GIS Geographic Information System

HSM Hardware Security Module

KEK Key Encryption Key

KML Keyhole Markup Language

JSON JavaScript Object Notation

NIST
National Institute of Standards and Technology (United States of

America)

P2P Peer To Peer

OGC Open Geospatial Consortium

RDF Resource Description Framework

REST Representational State Transfer

RGS Référentiel général de sécurité (ANSSI, France)

SAML Security Assertion Markup Language

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 7 Public

SON Self Organized Network

SOS System of Systems

SE2 Subproject Experiment 2

SP Subproject (main subdivision of DRIVER)

TRL Technology Readiness Level

WFS Web Feature Service

WMS Web Map Service

WP Work Package

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 8 Public

Executive Summary

DRIVER͛s Work Package 42 Architecture for Strengthened Responses aims at designing the software

architecture that will enable the testing of the SP4 experiments which will assemble a selection of

Crisis Management (CM) tools provided by WP43 Situation Assessment Tools, WP44 Tasking and

Resource Management Tools and WP45 Secured Interoperability Tools.

This architecture has to meet the following requirements:

• To enable the connectivity of existing operational tools (legacy systems, SP4 operational

tools)

• To be compatible with the SP2 test-bed environment (e.g.: simulators, evaluation modules)

• To enable the management of a secured heterogeneous community

• To enable the development of a service based technical system of systems

• To prepare the secured cloud deployment experiment

The purpose of this deliverable is to provide an integration platform for the SP4 technical tools. The

architecture of this Integration platform will be based on the Service Oriented Architecture (SOA)

paradigm. It will make extensive use of existing state of the art standards and platforms and will

choose components coming from the open source community (e.g: IP, SOA, ESB, Web-services,

SOAP, J2E, XML, KML, RDF …Ϳ. It will provide basic common services and will be designed in

coherence with the SP2 test-bed and related to the interoperability Standards task of WP45, Task

45.1, and with the aim of providing valuable input to WP46, Integration & Transverse experiment.

A Common Information Space (CIS) will be used to enable the secured information exchange

between the participating applications. It is based on the basis that in a SOA context, every

application can offer data, information provider, and/or receive data, information consumer, and is

agnostic concerning the other partners in the Information space.

Within the CIS, the architecture defines the CIS Adaptor as the connector used by the tools to get

access to the shared information space. Each tool will implement this adaptor according to the

defined common architecture so that interoperability is guaranteed.

The CIS communication between the different tools will be done by an implementation of the CIS

distributor. There are several options to implement it, like Common Shared Services, Peer To Peer or

Enterprise Service Bus. Also there are other supporting tools that could be used to enhance the

functionality of the CIS like Cyris or Ingest.

Further details of the architecture will be provided in coming deliverables and they will include

information about:

• Further details in the scope of the Specification documentation and deployment of the

prototype and final integration platform

• Interfaces specifications and integration guidelines

• Documentation and deployment of prototype and final secured system access control

• Secured cloud deployment and documentation

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 9 Public

This document is the first version of Specification documentation and deployment of the prototype

and final integration platform. There will be a second iteration of this document that will provide

further details and more deep understanding for the final integration platform.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 10 Public

1 Introduction

1.1 Introduction and Purpose

SP4 aims at strengthening the response effort in European Union by filling the main improvement

needs of the responders such as: interoperability, information sharing, situation assessment, early

warning, resource management, tasking, capacity building, and interaction with citizens. It addresses

all bodies of the responder community (i.e.: fire-brigade, public health, police, civil security, and etc.),

all phases (preparedness & response) and all levels (from local to European).

The purpose of WP42 Architecture for Strengthened Responses is to provide a suitable architecture

for the experiments that will be carried out in SP4 and SP6.

On the one hand, a portfolio of tools was prepared in SP4 covering tools from WP43 Situation

Assessment Tools, WP44 Tasking and Resource Management Tools and WP45 Secured

Interoperability Tools. The tools were evaluated and assessed and furthermore they were classified in

accordance with the main features they had.

On the other hand, six experiments are being defined within the scope of SP4, and each of them will

focus on a specific topic and will use a subset of the tools of the portfolio.

The aƌĐhiteĐtuƌe͛s ŵaiŶ aiŵ is to enable the exchange of current information between the involved

tools. It has to be flexible enough to be used in all the experiments, enabling services enough to fulfil

their needs, so that involved tools may have a suitable framework with the required interoperability

for experiments to be performed properly.

1.2 Scope

The scope of WP42 is the description of the technical architecture to be used in the experiments

covering the:

 Definition of the architectural technical guidelines

 Specification documentation and deployment of the prototype and final integration

platform

 Interfaces specifications and integration guidelines

 Documentation and deployment of prototype and final secured system access control

 Secured cloud deployment (prototype & final) and documentation

This deliverable describes the component, tools and services that WP43, WP44 and WP45 will use for

the development of the experiments together with the integration platform for the integration of

SP4 technical tools. This architecture will be based on the Service Oriented Architecture (SOA)

paradigm. It will make extensive use of existing state of the art standards and platforms and will

choose components coming from the open source community (e.g: IP, SOA, ESB, Web-services,

SOAP, J2E, XML, KML, RDF…Ϳ. It will provide basic common services and will be designed in coherence

with the SP2 test-bed and related to the interoperability Standards task of WP45.

This document is the first component document, and following documents will provide detailed

information about the components part of the integration platform.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 11 Public

1.3 Document Structure

Besides this introductory chapter, the deliverable contains the following sections:

Chapter 2, introduces available tools and technologies to be used within the integration platform and

the experiments from both the ICT and the CM perspectives.

Chapter 3, describes the integration platform where all the tools will be used to perform the

following experiments. It includes the architecture, the components and the functionality they

provide.

Chapter 4, Overview of experiments: it provides a description of the experiments, with focus on

integration platform and components.

Chapter 5, provides a conclusion of this document and way ahead.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 12 Public

2 SOTA of standards and technologies

2.1 Introduction

When defining the Integration Platform for the SP4 technical tools and more specifically, when

defining the architecture of this Integration Platform, it is important to establish a good basis in

which the fundamentals of the design will be built. In this case, the first issue that needs to be

addressed is the presentation of the available standards and technologies that can be used to build

this Integration Platform. This is performed through an initial overview of the available technologies

and standards in the scope of Service architectures and Crisis Management so we are able to

establish a start point for defining the used standards and technologies.

The aim of the Integration Platform is to use the Service Oriented Architecture (SOA) paradigm. It will

make extensive use of existing state of the art standards and platforms and will choose components

coming from the open source community (e.g: IP, SOA, ESB, Web-services, SOAP, J2E, XML, KML,

RDF…Ϳ. It will provide basic common services such as mail, routing, stack management.

2.2 Information and Communications Technologies

2.2.1 Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing distributed capabilities

that may be under the control of different ownership domains. In general, entities (people and

organizations) create capabilities to solve or support a solution for the problems they face in the

course of their business. It is natural to think of oŶe peƌsoŶ͛s Ŷeeds ďeiŶg ŵet ďǇ Đapaďilities offeƌed
ďǇ soŵeoŶe else; oƌ, iŶ the ǁoƌld of distƌiďuted ĐoŵputiŶg, oŶe Đoŵputeƌ ageŶt͛s ƌeƋuiƌeŵeŶts
being met by a computer agent belonging to a different owner. There is not necessarily a one-to-one

correlation between needs and capabilities; the granularity of needs and capabilities vary from

fundamental to complex, and any given need may require the combining of numerous capabilities

while any single capability may address more than one need.

Service Oriented Architecture is the natural evolution of distributed computing based on request-

reply structure for synchronous and asynchronous services. The individual function elements are

modularized and presented as services for consumer applications. The key point is that these services

are loosely coupled and the service interface is independent of the implementation of the service.

SOA services have self-describing interfaces in platform-independent XML documents. Web Services

Description Language (WSDL) is the standard used to describe the services.

When using SOA, there are some key concepts that need to be explained in advance. WSDL, UDDI,

and SOAP are the fundamental pieces of the SOA infrastructure. WSDL is used to describe the

service; Universal Description , Discovery, and Integration or UDDI, to register and look up the

services; and Simple Object Access Protocol or SOAP, as a transport layer to send messages between

service consumer and service provider. While SOAP is the default mechanism for Web services,

alternative technologies accomplish other types of bindings for a service. A consumer can search for

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 13 Public

a service in the UDDI registry, get the WSDL for the service that has the description, and invoke the

service using SOAP.

2.2.2 Enterprise Service Bus (ESB)

An ESB is the mechanism by which messages are transported between a client and a service. ESB

refers to a software architecture style that provides an abstraction layer on top of an implementation

of an enterprise messaging system. In addition to this basic capability, an ESB should offer the

following facilities:

 A message queuing capability.

 Message routing.

 Message transformation.

 Adapters for legacy applications

 Implementation of a security model including authentication and support for WS-Security.

 Support for Web service protocols including those specified by the major specifications.

 Support for monitoring and logging message activity.

The benefit of using an ESB within a SOA is that it eases the process of creating an SOA by reducing

the number of point-to-point connections required to allow services to communicate each other.

Within the boundaries of an ESB, support for multiple protocols and data transformation enables

heterogeneous services to behave as if they were homogeneous. Adapters allow us to expose legacy

systems as services without programming. The support for reliable and secure messaging and

queuing is also available through straight-forward configuration rather than coding. Add in the

availability of logging and access control for governance and ESB can be a very useful tool indeed.

The downside is that it takes time and effort to develop sufficient familiarity with an ESB tool in order

to achieve the maximum benefit from it.

An ESB does not provide a Service Oriented Architecture, but provides the features with which one

may be implemented and is not necessarily web-services based. The requestor and provider of the

service within an ESB do not have to agree on the message format, message transport or even the

target address.

2.2.3 Web-services

The application of Web services allows the constitution of an SOA. In general, a Web service is a

specific kind of service which can be identified unambiguously by an URI and which uses Internet

standards such as HTTP for transport.

The World Wide Web Consortium (W3C) provides a more specific and accurate definition:

͞A Weď seƌǀiĐe is a softǁaƌe sǇsteŵ desigŶed to suppoƌt iŶteƌopeƌaďle ŵaĐhiŶe-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its

description using SOAP messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-ƌelated staŶdaƌds.͟ [WϯC Weď SeƌǀiĐes Architecture Group]
1
.

1
 Web Services Architecture Working Group http://www.w3.org/2002/ws/arch/

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 14 Public

According to this definition Web services are built on top of well-known and platform-independent

protocols fulfilling the key requirements of an SOA: the dynamic discovery and invocation of a service

is provided by UDDI, WSDL, and SOAP. The usage of XML supports the required platform-

independence, and HTTP offers internet-wide interoperability.

In conclusion, web services typically interact applying SOAP messages to exchange XML data. The

web services interfaces can be described using the Web Service Definition Language (WSDL) while

the Universal Description , Discovery, and Integration (UDDI) standard constitutes a protocol for

directory services enabling clients to locate web services and examine the details.

There seems to be general confusion about the relationship between SOA and Web services. In an

April 2003 Gartner report, Yefim V. Natis
2
 makes the distinction as follows: "Web services are about

technology specifications, whereas SOA is a software design principle. Notably, Web services' WSDL

is an SOA-suitable interface definition standard: this is where Web services and SOA fundamentally

connect." Fundamentally, SOA is an architectural pattern, while Web services are services

implemented using a set of standards; Web services is one of the ways you can implement SOA. The

benefit of implementing SOA with Web services is that you achieve a platform-neutral approach to

accessing services and better interoperability as more and more vendors support more and more

Web services specifications.

2.2.4 Simple Object Access Protocol (SOAP)

SOAP is a communication protocol used between applications that stands for Simple Object Access

Protocol. This protocol is based on XML and is basically a format for sending messages through

Internet between different services in different platforms using different programming languages. It

is simple and extensible.

SOAP is used primarily for making remote procedure calls across machine and network boundaries.

SOAP has these primary advantages:

 Neutrality: Posting data over the HTTP protocol means not only that the delivery mechanism

is widely available but also that SOAP is able to get past firewalls that pose problems for

other methods.

 Independence: SOAP uses the open standard of XML to format the data, which makes it

easily extendable and well supported.

 Extensibility: Because SOAP is a wire protocol based on XML and HTTP, it is possibly the most

widely interoperable protocol to date.

This XML-based protocol consists of three parts:

 An envelope, which defines the message structure and how to process it

 A set of encoding rules for expressing instances of application-defined datatypes

 A convention for representing procedure calls and responses

2.2.5 Representational State Transfer (RESTful)

More than a decade after its introduction, REST (Representational State Transfer) has become one of

the most important technologies for Web applications. Its importance is likely to continue growing

2
 https://www.gartner.com/doc/391595/serviceoriented-architecture-scenario

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 15 Public

quickly as all technologies move towards an API orientation. Every major development language now

includes frameworks for building RESTful Web services. As such, it is important for Web developers

and architects to have a clear understanding of REST and RESTful services. While REST stands for

Representational State Transfer, which is an architectural style for networked hypermedia

applications, it is primarily used to build Web services that are lightweight, maintainable, and

scalable. A service based on REST is called a RESTful service. REST is not dependent on any protocol,

but almost every RESTful service uses HTTP as its underlying protocol.

Every system uses resources. These resources can be pictures, video files, Web pages, business

information, or anything that can be represented in a computer-based system. The purpose of a

service is to provide a window to its clients so that they can access these resources. Service architects

and developers want this service to be easy to implement, maintainable, extensible, and scalable. A

RESTful design promises that.

As a programming approach, REST is a lightweight alternative to Web Services and RPC. Much like

Web Services, a REST service is:

• Platform-independent (you don't care if the server is Unix, the client is a Mac, or anything

else),

• Language-independent (C# can talk to Java, etc.),

• Standards-based (runs on top of HTTP), and

• Can easily be used in the presence of firewalls.

2.2.6 JavaScript Object Notation (JSON)

JSON is an open standard format that uses human-readable text to transmit data objects consisting

of attribute–value pairs. It is used primarily to transmit data between a server and web application,

as an alternative to XML. Although originally derived from the JavaScript scripting language, JSON is a

language-independent data format. Code for parsing and generating JSON data is readily available in

many programming languages.
 3

JSON grew out of a need for stateful, real-time server-to-browser communication without using

browser plugins such as Flash or Java applets, which were the dominant method in the early 2000s.

Douglas Crockford was the first to specify and popularize the JSON format. The acronym was coined

at State Software, a company co-founded by Crockford, Chip Morningstar and Robert F. Napiltonia in

April 2001 and funded by Tesla Ventures. The co-founders agreed to build a system that used

standard browser capabilities and provided an abstraction layer for Web developers to create

stateful Web applications that had a persistent duplex connection to a Web server by holding the

two HTTP connections open and recycling them before standard browser time-outs if no further data

were exchanged. The idea for the State Application Framework was developed by Morningstar at

State Software. It was used in a project at Communities.com for Cartoon Network, which used a plug-

in with a proprietary messaging format to manipulate DHTML elements (this system is also owned by

3DO). Upon discovery of early Ajax capabilities, digiGroups, Noosh, and others used frames to pass

information into the user browsers' visual field without refreshing a Web application's visual context,

realizing real-time rich Web applications using only the standard HTTP, HTML and JavaScript

capabilities. Crockford then found that JavaScript could be used as an object-based messaging format

for such a system.

3
 https://en.wikipedia.org/wiki/JSON

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 16 Public

Although JSON was originally based on a non-strict subset of the JavaScript scripting language

(specifically, Standard ECMA-262 3rd Edition—December 1999) and is commonly used with that

language, it is a language-independent data format. Code for parsing and generating JSON data is

readily available for a large variety of programming languages. JSON's Web site lists JSON libraries by

language.

JSON is promoted as a low-overhead alternative to XML as both of these formats have widespread

support for creation, reading and decoding in the real-world situations where they are commonly

used.

2.2.7 eXtensible Markup Language (XML)

XML is a markup language for documents containing structured information. The essence of XML is in

its name: eXtensible Markup Language.

 Extensible: XML is extensible. It lets you define your own tags, the order and number in

which they occur, and how they should be processed. Another way to think about

extensibility is to consider that XML allows all of us to extend our notion of what a document

is: it can be a file that lives on a file server, or it can be a transient piece of data that flows

between two computer systems (as in the case of Web Services).

 Markup: The most recognizable feature of XML is its tags, or elements (to be more accurate).

In fact, the elements you will create in XML will be very similar to the elements you have

already been creating in your HTML documents. However, XML allows you to define your

own set of tags.

 Language: XML is a language that is very similar to HTML. It is much more flexible than HTML

ďeĐause it alloǁs Ǉou to Đƌeate Ǉouƌ oǁŶ Đustoŵ tags. Hoǁeǀeƌ, it͛s iŵpoƌtaŶt to ƌealize that

XML is not just a language. XML is a meta-language: a language that allows us to create or

define other languages. For example, with XML we can create other languages, such as RSS,

MathML (a mathematical markup language), and even tools like eXtensible Stylesheet

Language Transformations (XSLT)
4
.

XML is not a replacement for HTML. XML and HTML were designed with different goals:

 XML was designed to describe data, with focus on what data is

 HTML was designed to display data, with focus on how data looks

HTML is about displaying information, while XML is is a software and hardware independent tool for

carrying information.

XSD (XML Schema Definition), a recommendation of the World Wide Web Consortium (W3C),

specifies how to formally describe the elements in an Extensible Markup Language (XML) document.

It can be used by programmers to verify each piece of item content in a document. They can check if

it adheres to the description of the element it is placed in.
 5

Like all XML schema languages, XSD can be used to express a set of rules to which an XML document

must conform in order to be considered "valid" according to that schema. However, unlike most

other schema languages, XSD was also designed with the intent that determination of a document's

4
 http://www.sitepoint.com/really-good-introduction-xml/).

5
 https://en.wikipedia.org/wiki/XML_Schema_(W3C).

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 17 Public

validity would produce a collection of information adhering to specific data types. Such a post-

validation infoset can be useful in the development of XML document processing software.

2.2.8 Windows Communication Foundation (WCF)

Windows Communication Foundation (WCF) is a framework for building service-oriented

applications. Using WCF, you can send data as asynchronous messages from one service endpoint to

another. A service endpoint can be part of a continuously available service hosted by IIS, or it can be

a service hosted in an application. An endpoint can be a client of a service that requests data from a

service endpoint. The messages can be as simple as a single character or word sent as XML, or as

complex as a stream of binary data. A few sample scenarios include:

 A secure service to process business transactions.

 A service that supplies current data to others, such as a traffic report or other monitoring

service.

 A chat service that allows two people to communicate or exchange data in real time.

 A dashboard application that polls one or more services for data and presents it in a logical

presentation.

 Exposing a workflow implemented using Windows Workflow Foundation as a WCF service.

 A Silverlight application to poll a service for the latest data feeds.

While creating such applications was possible prior to the existence of WCF, WCF makes the

development of endpoints easier than ever. In summary, WCF is designed to offer a manageable

approach to creating Web services and Web service clients.
 6

2.2.9 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is an infrastructure that enables the encoding, exchange

and reuse of structured metadata. RDF is an application of XML that imposes needed structural

constraints to provide unambiguous methods of expressing semantics. RDF additionally provides a

means for publishing both human-readable and machine-processable vocabularies designed to

encourage the reuse and extension of metadata semantics among disparate information

communities. The structural constraints RDF imposes to support the consistent encoding and

exchange of standardized metadata provides for the interchangeability of separate packages of

metadata defined by different resource description communities.

RDF is a flexible schema-less data model. It is one of the core technologies of the Semantic Web and

the current W3C standard to represent data on the web. As mentioned, it is a data model. It can be

compared to the relational model which is the way you organize data in a relational database: group

related things in tables with attributes, create links between tables, etc. RDF is just another way of

organizing your data as a graph. RDF is a graph. A graph is a representation of objects that are

connected by links. In other words, you can have two things which are related in some way through a

link that connects them. Take for example the following sentence: Austin is the capital of Texas. The

two things in this sentence are Austin and Texas. These two things are related by the link "is the

capital of."

6
 https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 18 Public

The W3C published a specification of RDF's data model and an XML serialization as a

recommendation in 1999. RDF/XML is a syntax implementation to serialize an RDF graph as an XML

documents (other serialization formats exist like JSON-LD, based on JSON, etc.). From now on in this

document RDF should be understood as RDF/XML.

2.3 Crisis Management Standards and Technologies

The following section is based on the information generated as a result of task T45.1 Interoperability

standards of DRIVER and compiled in the document D45.1 [1] and also on the information generated

as a result of this task T42.2.

Interoperability standards offer the following benefits:

• Reduce life cycle costs: the cost to develop, integrate and support systems is reduced by

eliŵiŶatiŶg ͞stoǀepipe͟ iŵpleŵeŶtatioŶs.
• Reduce development and integration time: common communications prevent the

reinvention of the wheel, allow for code and conceptual re-use and speed integration since

proven technology is employed.

• Framework for technology insertion: with a common interface, as new technologies are

created, those technologies can easily be integrated with minor modifications and known

and documented consequences into existing systems.

T45.1 has analyzed existing relevant prominent standards, for instance: EDXL, OGC standards for geo-

data and sensor data or the TSO standard from FP6-OASIS for semantic interoperability.

In the context of the DRIVER project we focus on interoperability between first-responders and crisis

management organizations within the EU. Collaboration and coordination there can take place at

various levels and between a wide variety of organizations. We can distinguish collaboration within

hierarchical structures but also across hierarchical structures and at local level (local accident

management), at cross-border regional level within a country), at international cross-border level

between adjacent regions, at international level between member states and for coordination

purposes at EU-level.

In the survey of interoperability standards performed in T45.1 the most common standards

specifically designed for crisis management domain and standards for exchange of maps, imagery

and spatial data are described and summarized here as reference.

In the scope of the actual task T42.2, some investigation work has been performed to complete and

review the previous information from T45.1 so that it better reflects the actual situation of the

standards and technologies within Crisis Management.

The following Table 1 summarizes the list of standards for map, spatial data and imagery:

Interoperability Standards Full name

EDXL Emergency Data Exchange Language

CAP Common Alerting Protocol

JC3IEDM Joint Consultation, Command and Control Information

Exchange Data Model

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 19 Public

Interoperability Standards Full name

NF399 Norme Française 399

TSO/EMSI Tactical Situation Object/Emergency Management Shared

Information

KML Keyhole Markup Language

GeoTIFF Geo Tagged Image File Format

Esri Shapefiles Geospatial vector data format for geographic information

system (GIS) software.

GeoJSON Geographic JavaScript Object Notation

WMS Web Map Service

WFS Web Feature Service

SAML Security Assertion Markup Language

XACML eXtensible Access Control Markup Language

XMPP eXtensible Messaging and Presence Protocol

CMIS Content Management Interoperability Services

PFIF People Finder Interchange Format

Military Imagery Standards STANAG 4545, STANAG 4609

Table 1: Interoperability Standards

The following Table 2 summarizes the evaluation of the different standards performed in D45.1 and

improved as part of this deliverable.

Standard
Design and

Maintenance

Implementation

and configuration

Usage

EDXL

SitRep:

situation reporting

RM:

Resource Messaging

HAVE

Hospital Availability

- Widely used

- Family of separate sub

standards each with

specific functionality incl.

workflows.

- Relatively easy - Relevant in CM

domain

- Only limited usage

for hospital

availability, situation

reporting and

tracking of

emergency clients

EDXL DE - Distribution Element

- Envelope for any

payload (XML or specified

mime type) used in

disaster management

- Easy - Provides general

information and

references related

to the crisis, sender

and receiver.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 20 Public

Standard
Design and

Maintenance

Implementation

and configuration

Usage

CAP - Widely used

- Simple standard

- Relatively easy - Only for early

warning purposes.

JC3IEDM - Mature standard

- Very complex standard,

complex maintenance

- Complex - Developed for

military purposes

NF399 - Widely used in France

- Specific French values.

Difficult to implement in

other countries.

- Limited to incident

management

TSO/EMSI - Accepted standard by

big number of

organizations.

- Difficult maintenance

 - Limited to incident

management

KML - Depends on using of

right tools

- Based on widely

accepted XML.

- KMZ (compressed

version) is preferred

- Widely used, also

for crisis

management.

GeoTIFF - Active development has

stalled since 1990s

- Stable, cheap and

common format

- Widely used and many

stable software libraries

and components

available

- Widely used for

aerial/ satellite

image

Esri Shape files - De facto format for

vector data

- Simple and cheap

- Widely used and many

stable software libraries

and components

available

- Widely used for

vector data

GeoJSON - Depends on availability

of parsers

 - Widely used

WMS - Very solid but

sometimes difficulties in

styling geographic

features

- Widely used and many

stable software libraries

and components

available

- Offers easy way to

provide digital map

display

functionalities

WFS - Very solid - Widely used and many

stable software libraries

and components

available

- WFS and WMS in

combination provide

powerful

functionalities

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 21 Public

Standard
Design and

Maintenance

Implementation

and configuration

Usage

SAML - Open standard targeting

business to business

environments

- Well designed and

easy to maintain

- Open standard

targeting business to

business

environments

XACML - Well proven and clear

design but complex rules

design

XMPP - Based on widely

accepted XML

- General purpose

nature allows using

XMPP in any domain.

- QoS not assured

- Not suited for

binary data

CMIS - Well suited for

interoperability between

Content Management

systems

- Widely used

PFIF - Promoting convergence

and all data is traceable

 - People Finder

Interchange Format

for information

about missing or

displaced people

SensorML, SOS - Designed for sensor

data exchange

-Based on XML and web

services

STANAG 4545 - Needs complicated

pre/post-processing

- Explicit byte counts

can cause

misinterpretations.

- Developed for

military domain but

also suitable for CM

domain

STANAG 4609 - Developed for

military domain.

Suitability for CM

domain should be

carefully analyzed.

Table 2: Summary of Standards Evaluation

2.3.1 Recommendations

Finally, there are a couple of recommendations that need to be addressed when deciding which of

these standards are more suitable for each situation:

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 22 Public

1. In the context of DRIVER, an interoperability gap is identified for Incident Management

Information for volunteers. It is recommended to start developing step-by-step standard

for this areas and test and refine these in DRIVER experiments.

2. It is recommended to use the EDXL, CAP, TSO standards within DRIVER and find out

during experiments to what extent the standards fulfil the needs of crisis management

users.

3. For the exchange of geographic information, it is recommended to use standards

provided by OGC (http://www.opengeospatial.org/), Esri Shape files, and GeoTIFF.

A limited amount of geo data can be exchanged by using file transfer (e.g. KML, GeoTIFF).

For large geospatial data it is recommended to expose corresponding services providing

just the requested information (e.g. WMS, WFS).

4. Providing a consistent and federated access control to the data accessed and exchanged

seems an important added value of a Common Information Space. The SAML standard to

be applied in front of Crisis Management tools and applications should enable a good

interoperability to deploy a Single Sign On solution across a CM system of systems.

http://www.opengeospatial.org/

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 23 Public

3 Integration Platform

In this chapter we are presenting the Integration Platform, the selected technologies to be used to

implement it and how is the basic architecture description.

3.1 Selected Technologies and Standards

3.1.1 Service Oriented Architecture and related ICT

For the implementation of the integration architecture Service Oriented Architecture (SOA) based on

RESTful Web Services is implemented as it is described for Common Information Space introduction

later in this document. Further details are available at Annex 1 SOA.

For generic purpose, the Unicode Character Set and UTF-8 Encoding must be used.

3.1.2 Distribution Element (EDXL DE)

The EDXL DE V 2.0 is defined as a standard draft issued by the OASIS Emergency Management TC
7

http://docs.oasis-open.org/emergency/edxl-de/v2.0/csprd02/edxl-de-v2.0-csprd02.odt.

It provides a standard message distribution format for data sharing among emergency information

systems, and it serves two important purposes:

(1) The DE 2.0 allows an organization to wrap separate but related pieces of emergency

iŶfoƌŵatioŶ, iŶĐludiŶg aŶǇ of the EDXL ŵessage tǇpes, iŶto a siŶgle ͞paĐkage͟ foƌ easier and

more useful distribution;

(2) The DE 2.0 allows an organizatioŶ to ͞addƌess͟ the paĐkage to oƌgaŶizatioŶs oƌ iŶdiǀiduals
with specified roles, located in specified locations or those interested in specified keywords.

Every message exchanged in the Common Information Space shall be encapsulated in an EDXL DE

envelope in order to identify and provide information to enable the routing of encapsulated

payloads, called Content Objects. One EDXL DE may contain several different Content Objects if they

belong to the same sender, time stamp and descriptive information given in the EDXL DE.

The authentication and authorization of information in the CIS should be handled by the data

provided in the DE.

3.1.3 Tactical Situation Object (TSO)

The TSO (Tactical Situation Object) was developed under the EU-FP6- OASIS project (2004-2008) and

approved as a CEN Workshop Agreement (CWA) in October 2008
8
.

Based on the results from previous CWA, ISO/PRF TR 22351
9
 (Societal security - Emergency

management - Message structure for exchange of information), still under development at the

7
 http://www.oasis-open.org/committees/emergency/

8
 CEN, "CEN Workshop agreement CWA 15931, Disaster and emergency management-Shared Situation

Awareness", Feb 2009. https://www.oasis-open.org/committees/download.php/42411/CWA_15931-1.pdf
9
 http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=57384

http://docs.oasis-open.org/emergency/edxl-de/v2.0/csprd02/edxl-de-v2.0-csprd02.odt
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=57384
http://www.oasis-open.org/committees/emergency/
https://www.oasis-open.org/committees/download.php/42411/CWA_15931-1.pdf

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 24 Public

moment of writing this document, is adopting TSO as the message structure for the exchange of

situational awareness information in emergency management scenarios.

The TSO is used to transfer the view of an emergency situation as seen by a particular observer at a

particular time to another observer, thus contributing to the situational awareness of the various

parties regarding a given disaster or crisis event. The message can be used peer-to-peer for observers

(either from the same or different organisations) at the same level of the command hierarchy, or

used to send information up and down the hierarchy.

The TSO message follows an XML structure (that is embedded into an EDXL DE envelope for its

transfer) based on a concrete object model whose main entities are:

 the events, understood as something that takes place which an agency should respond to

(e.g. a natural or man-made disaster),

 the resources available to support or help in the response to the events, and

 the missions aimed at handling the events and thus reducing their impact.

The objective of the TSO specification is to ensure that the semantics of an individual message are

unambiguous; however, it does not prescribe how to merge messages or how to transfer them.

3.1.4 Common Alerting Protocol (CAP)

The Common Alerting Protocol is a standard provided by OASIS
10

, standard definition is provided at

http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.doc. CAP is a simple but general format

for exchanging all-hazard emergency alerts and public warnings over all kinds of networks.

The CAP protocol is used in the DRIVER Common Information Space (CIS) in its current version V1.2,

in order to communicate alerts, warnings and notifications from any application that detects a critical

situation (e.g. call center, sensor system, mobile device) to all interested systems (e.g. common

operational picture, public alerting device).

The CAP message is sent embedded in the EDXL DE envelope. The consistency of redundant data in

the envelope and the payload (CAP message) has to be guaranteed by the sending adaptor. It is

possible that the sender information differs between EDXL DE and CAP, e.g. in case of forwarded

messages. For authentication and authorization purpose, always the information in the envelope

counts and the sender is responsible to maintain confidentiality of forwarded messages.

The sender of CAP messages is further responsible to be in line with the standard and to avoid

sending corrupted messages. The receiver of CAP messages shall accept all features defined in the

staŶdaƌd. If the ƌeĐeiǀeƌ ĐaŶ͛t pƌoĐess a CAP ŵessage, it should reply with a CAP error message to the

sender (status=system, msgType=error).

In addition to the data elements defined within the standard, additional information might be

provided in <parameters>. These parameters can be specified in CAP profiles to be agreed upon

between specific applications, and might be ignored by applications not concerned with the profile.

Further on the DRIVER project may recommend a European CAP profile that defines specific use of

optional attributes and value lists in the context of European CDM (example: see Australian CAP

profile,

http://docs.oasis-open.org/emergency/edxl-cap1.2-au/v1.0/cs01/edxl-cap1.2-au-v1.0-cs01.doc)

10

 http://www.oasis-open.org/

http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.doc
http://docs.oasis-open.org/emergency/edxl-cap1.2-au/v1.0/cs01/edxl-cap1.2-au-v1.0-cs01.doc
http://www.oasis-open.org/

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 25 Public

3.1.5 GIS Standards

Geospatial information to be handled as a map layer can be embedded in the EDXL DE as Content

OďjeĐt ͞OtheƌCoŶteŶt͟ ;ŶoŶ-XML). The geospatial information has in this case to follow the selected

standards.

The applicable GIS standards are described in D45. 1 – Interoperability Standards [1]. For the

implementation of the CIS the following were selected:

WMS (Web Map Service) and WFS (Web Feature Service) are standards defined by OGC
11

. The data

(map information) is provided as Web Service. The information transmitted in the CIS is just the URL

where the service can be consumed. The service itself will not be routed over the CIS. All necessary

meta-data and service descriptions needed for the consumption of the service have to be exposed

and can be queried at the service location. The scope of services is assumed as provided by

GeoServer
12

.

GeoTiff is a public domain raster image format which provides geographical metadata. As GeoTiff

files tend to be very large, only small and limited images shall be transmitted in this format. For large

images (e.g. satellite or aerial images of a wider area), the image provider shall render the images

and transform them into WMS.

ShapeFile is the de faĐto staŶdaƌd foƌŵat foƌ ǀeĐtoƌ data. OŶe ͞shapefile͟ ĐoŶsists of ŵoƌe thaŶ oŶe
physical file: main file containing geometric objects like points or polygons, the data-file which stores

additional data for each geometric object, the index-file holding an index to each record in the data-

file. Depending on the used tools other accompanying files might exist e.g. holding spatial projection

details. So shapefiles are handled as archives (ZIP) containing all files beloŶgiŶg to oŶe ͞shapefile͟.

3.2 Portfolio of CM tools

DuƌiŶg DRIVER͛s SPϰ IŶitial IŶǀeŶtoƌǇ of tools ŵeetiŶg, that took plaĐe at Aiǆ-en-Provence, France, in

November 2014, a series of demonstration sessions were carried out in which several tools in the

scope of WP43, WP44 and WP45 were presented and evaluated. These tools were initially classified

into different categories according to the main features they include. This classification was

improved during the efforts developed within SP4, and it is shown by the next diagram:

11

 http://www.opengeospatial.org/
12

 http://geoserver.org/

http://www.opengeospatial.org/
http://geoserver.org/

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 26 Public

Figure 1: Portfolio of tools: preliminary classification

The green boxes in Figure 1 represent the categories where these tools were classified into when

they were evaluated during the SP4 Initial Inventory of tools, while coloured boxes depict each tool

according to the respective Technology Readiness Level. As explained before, this classification was

made according to the main features shown by the tools. The connectors between categories

represent the potential exchange of data between the tools encompassed by them. This data

eǆĐhaŶge ǁould ďe suppoƌted ďǇ the tools gƌouped uŶdeƌ the ͞IŶfoƌŵatioŶ EǆĐhaŶge͟ ĐategoƌǇ.

It has to be also noted that some of the tools include features that were considered related not only

to SP4, but also to other SPs. This is for instance the case of SUMO tool iŶto the ĐategoƌǇ ͟SuppoƌtiŶg
tools͟ ;assoĐiated to SPϮ-test ďed toolsͿ, the tools Đlassified iŶto the ͞CitizeŶ ;ŶoŶ ǀoluŶteeƌsͿ͟ aŶd
͞VoluŶteeƌiŶg ĐitizeŶs͟ Đategoƌies ;assoĐiated to SPϯͿ oƌ iŶto the ͞TRAINING͟ ĐategoƌǇ ;assoĐiated to
SP5), as shown by Figure 1.

The maturity of the tools is evaluated according to the Technology Readiness Levels (TRL).

The 9 levels as defined by the European Commission (extracted from HORIZON 2020 – WORK

PROGRAMME 2014-2015) are:

1. TRL 1 – basic principles observed

2. TRL 2 – technology concept formulated

3. TRL 3 – experimental proof of concept

4. TRL 4 – technology validated in lab

5. TRL 5 – technology validated in relevant environment (industrially relevant environment in

the case of key enabling technologies)

6. TRL 6 – technology demonstrated in relevant environment (industrially relevant environment

in the case of key enabling technologies)

7. TRL 7 – system prototype demonstration in operational environment

8. TRL 8 – system complete and qualified

9. TRL 9 – actual system proven in operational environment (competitive manufacturing in the

case of key enabling technologies; or in space)

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 27 Public

The Technology Readiness Levels (TRL) of each tool has been self-evaluated by tools providers.

Tool Category TRL

RIB Dangerous substances Supporting tool 9

Large Event Shared situation awareness 8

Ingest Information Exchange 8

Crowdtasker Volunteer Citizens 4-5

COP Shared situation awareness 6

Socrates-CSS Information Exchange 7

Socrates FR First responders Local C2 6

Socrates OC Shared situation awareness 8

Socrates TSK Shared situation awareness 6

ESS Supporting tool 7

UFLY Digital sensors 5

3K Supporting tool 6

EmerT Supporting tool 6

ZKI Digital sensors 6

SUMO Supporting tool 1-9

IO-DA Planning 4-5

Delphi Supporting tool 7

DSS-Logistics Supporting tool 3

DEWS Supporting tool 7

PROCEED Training 3-8

PRoTect Resources management 8

SITRA Shared situation awareness 3-6

GDACS mobile Volunteer Citizens 6

HumLog Supporting tool 9

AnyLogic Supporting tool 9

Dashboard Supporting tool 9

Dashboard SUCCESS Supporting tool 8

Mego Supporting tool 9

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 28 Public

Tool Category TRL

EvacuAid Planning 6

SafeTrip Volunteer Citizens 8

Crisis Wall Shared situation awareness 7

LUPP First responders Local C2 9

Asphodèle First responders Local C2 9

Table 3: CM Tools TRL

3.3 Architecture Requirements

The Architecture requirements list has been refined and reworked from the list that was provided as

part of D42.1 [2] and that has been used as input for the work on this section. The requirements are

now classified according to different categories.

 Functional Requirements: Functional requirements of the system that are expressed in the

natural language style (as opposed to Use Cases).

1. A common information space (CIS) will handle the sharing of data among the tools

providing a publishing-subscribing mechanism.

2. As basic service, the information space shall not store data for operational purposes,

it shall only connect systems and transport data.

3. A ͞situatioŶ ŵaŶageƌ͟ shall ďe aďle to opeŶ up a speĐifiĐ iŶfoƌŵatioŶ spaĐe foƌ a
specific crisis situation and to invite participants.

4. The CIS should ensure that the exchanged data are syntactically correct.

5. It shall be possible to add value added services (VAS) within the CIS. e.g. for providing

aggregated data, for translating data, for collaboration of stakeholders and

estaďlishŵeŶt of a ͞tƌadiŶg zoŶe͟, etĐ.
 Documentation and Help: Requirements for on-line user documentation, help systems, help

about notices, etc.

 Usability: Requirements that affect the usability of the system, like language, accessibility,

User Interfaces, etc.

 Security: Security requirements of the system defining its needed ability to safeguard data

against loss or exposure, and to resist disruption by outside partners. Security is the ability to

protect an IT system against malicious use whilst at the same time allowing legitimate use.

6. Authentication will be required for a tool to connect to the CIS.

7. CIS would provide a certification authorization mechanism so that only tools with the

required security level would be granted access to classified data.

8. CIS should provide Audit and Logging tools.

 Availability and Reliability: Non Functional Requirements regarding availability, reliability

and planned maintenance.

 Performance and Capacity: Capacity and performance levels the system must satisfy.

Performance is the degree to which a system or component accomplishes its designated

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 29 Public

functions within given constraints, such as speed, accuracy, or memory usage. Capacity is a

measure of the resource usage of the system (e.g. memory, disk space, process threads)

9. Scalability is to be supported.

 Supportability: Requirements that will enhance the supportability or maintainability of the

system, like support documentation, corrective maintenance, etc.

 Systems Management and Manageability: System management requirements of the system

and concerns the operations and administration of the software and hardware systems, like

starting and stopping, backup and recovery, etc.

10. CIS should offer the possibility to be administrated so that topology and

configuration could be updated.

 Data Integrity: Concerns the ability of the system to protect data and preserve transactions,

like data persistency, etc.

 Interface: Interfaces that must be supported by the application, either user interfaces or

software interfaces, like web, database, client, etc.

11. Interfaces will be defined for interoperability.

 Business Constraints: Business constraints that the system must satisfy.

 Technical Constraints: Technical constraints that the system must satisfy.

12. Interface shall be technology-agnostic.

13. CIS shall be technology-agnostic.

14. A common standard format for the exchange of information in the CIS should be

agreed at SP4 level, it will be used by all tools involved by means of an adaptor

whenever needed.

15. Original format can be consumed to avoid data loss by double conversion

16. Interoperability on the semantic layer shall be partially ensured by using common

taxonomy, so that it can be understood by all connected systems.

 Applicable Standards: Requirements in terms of applicable standards, like XML, UTF-8, CAP,

TSO, etc.

 Licensing Requirements: Any licensing enforcement requirements or other usage restriction

requirements which are to be exhibited by the software, like limited usage, open source, etc.

 Legal, Copyright and Other Notices: Any necessary legal disclaimers, warranties, copyright

notices, patent notice, wordmark, trademark, or logo compliance issues for the software.

As a summary, find bellow a table with the complete list of the requirements:

Requirement Priority Optional Category

A common information space (CIS) must

handle the sharing of data among the tools

providing a publishing-subscribing

mechanism

First Functional

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 30 Public

Requirement Priority Optional Category

As basic service, the information space shall

not store data for operational purposes, it

shall only connect systems and transport

data

First Functional

A ͞situatioŶ ŵaŶageƌ͟ shall ďe aďle to opeŶ
up a specific information space for a specific

crisis situation and to invite participants

First Functional

The CIS must ensure that the exchanged

data are syntactically correct

First Functional

It shall be possible to add value added

services (VAS) within the CIS. e.g. for

providing aggregated data, for translating

data, for collaboration of stakeholders and

estaďlishŵeŶt of a ͞tƌadiŶg zoŶe͟, etĐ.

Third Yes Functional

Authentication will be required for a tool to

connect to the CIS

First Security

CIS should provide a certification

authorization mechanism so that only tools

with the required security level would be

granted access to classified data

Second Security

CIS should provide Audit and Logging tools Second Security

Scalability should be supported Second Performance and Capacity

CIS should offer the possibility to be

administrated so that topology and

configuration could be updated

Second Systems Management and

Manageability

Interfaces must be defined for

interoperability

First Interfaces

Interface shall be technology-agnostic First Technical Constraints

CIS shall be technology-agnostic First Technical Constraints

A common standard format for the

exchange of information in the CIS must be

agreed at SP4 level, it will be used by all

tools involved by means of an adaptor

whenever needed

First Technical Constraints

Original format should be consumed to

avoid data loss by double conversion

Second Yes Technical Constraints

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 31 Public

Requirement Priority Optional Category

Interoperability on the semantic layer

should be partially ensured by using

common taxonomy, so that it can be

understood by all connected systems

Second Technical Constraints

Table 4: Architecture Requirements

3.4 Common Architecture Description

This section describes the common architecture design that has been decided to implement the

System of Systems. It is mainly based on the Service Oriented Architecture approach, and the specific

implementation guidelines are described as the Common Information Space or CIS.

3.4.1 CIS, Common Information Space

The requirements and principles of the Common Information Space as an Integration Platform

(middleware) that enables the secured information exchange between the participating applications

are defined in [2] D42.1, section 4.3.

Every application integrated in the CIS can offer data (information provider) and/or receive data

(information consumer) in standardized formats and via defined communication protocols without

the need for particular interfaces between dedicated partners. If the application uses data

communication protocols that are not supported by CIS, the protocols have to be converted by

adaptors. Beyond the harmonisation of data connection (physical interoperability) and data formats

(syntactical interoperability), key terms and taxonomies are translated by the adaptors from the

proprietary form of the provider to a standardised form in the CIS and back to the proprietary form

of the receiver.

When an application joins the CIS, it has to register its services in order to enable other applications

to address the offered services. A metadata model enables the applications to find out services that

fit with their own purpose. The registration process might be subject of authorisation and role

concepts (to be elaborated) in order to establish a protection hierarchy and to prohibit unauthorised

access to sensitive data.

The Common Information Space is a data sharing platform but not a data repository, aŶd it doesŶ͛t
have any business logic concerning interpretation and processing of the transported data.

Nevertheless, value added services can be attached to the CIS and made available for authorised

users (e.g. logging and legal recordiŶg, ƌepoƌtiŶg, ŵoŶitoƌiŶg …Ϳ.

3.4.1.1 CIS Adaptors

The Adaptors link the participating tools to the Common Information Space. For every tool and every

used data protocol, a specific adaptor has to be implemented. Adaptor templates will be provided by

the project team in order to enable the tool providers to write their adaptors in an easy and fast way.

The Adaptors stay in the responsibility and run on the server of the tool owner. Every access to the

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 32 Public

data hosted by the Adaptor is monitored by the authorisation concept implemented in the Adaptors

and is recorded for audit and tracing purposes.

Every Adaptor consists of three parts:

A. CIS Connector: manages the communication with the tool and translates proprietary

protocols to standards. The Connector is written by the tool provider based on the template.

B. CIS Core: manages central functions in a uniform way. Value added services can be

integrated in the Core (available for the whole system f systems).

C. CIS Distributor: manages the connections inside the CIS and the data exchange with the

other Adaptors in the CIS.

Figure 2: CIS Adaptor architecture

3.4.1.2 CIS Connector

The CIS Connector handles the communication on the side of the tool – that means it covers all code

specific to the protocols the tool uses. Therefore it has to be assembled and configured by the tool

owner or manufacturer based on the adaptor template.

The template consists on components providing the following functions:

 Network connectivity module receives/sends messages from/to the tool according the used

network protocol.

Templates for REST, SOAP and RSS connections will be prepared in the first step. The tool

owner has to maintain network configuration tables with the addresses of the services to be

connected.

 Data format converter transfers proprietary data formats of the message to/from the

standard messages exchanged in CIS (this step may be bypassed if the tool already uses the

appropriate standard).

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 33 Public

 Taxonomy translator replaces proprietary key values and enumerations by standardized ones

and vice versa, based on translation tables to be provided by the tool owner (ambiguities and

gaps between the taxonomies have to be resolved in the translation tables and may lead to

loss of information).

 EDXL DE generator assembles the parameters for the EDXL Distribution Element that

envelops all messages distributed in CIS. The template will provide a minimum set of default

values that might be extended by the developer of the CIS connector. I.e. security related

parameters can be added dependent on the message content.

 Logging, for debugging purposes only.

3.4.1.3 CIS Core

The CIS Coƌe ĐaŶ͛t ďe ŵodified ďǇ the adaptoƌ pƌoǀideƌ. It ŵaŶages ĐeŶtƌal CIS featuƌes, paƌtlǇ ďased
on the EDXL DE parameters transferred:

 Authentication assures that incoming messages originate from a trusted partner application,

according to the service registration.

 Authorization services control the flow of information and protect sensitive data from

unauthorized access. Appropriate encryption mechanisms will be defined and implemented.

 Validation of the transferred messages assures the formal correctness and application of

standards. Improperly formatted messages will be rejected.

 EDXL DE Wrapper packs the information into an EDXL Distribution Element (envelope) that

adds meta-information to the payload message.

 Object Buffer function stores large binary objects (message attachments) in an accessible

store (e.g. FTP server) and replaces them by the URI in the message.

 Message Buffer stores all outgoing messages in order to enable the partner applications to

query previous messages, e.g. in the case of sync after network interruption.

 Value Added Services (optional plug-ins) may make use of the transferred information e.g.

for message logging, auditing, reporting or statistics.

3.4.1.4 CIS Distributor

The CIS Distributor manages and synchronizes the message exchange between the various partner

applications in the CIS.

It supports two different distribution mechanisms:

1. Push technology Publish – Subscribe: The information provider posts a message to CIS.

The distributor sends the message to all information consumers (other Adaptors) that have

ďeeŶ ƌegisteƌed oŶ this seƌǀiĐe ;iŶfoƌŵatioŶ tǇpe, topiĐͿ. The puďlisheƌ doesŶ͛t care if the

message is actually received by all the subscribers. This mechanism suits for public

information.

2. Pull technology Request – Response: The information consumer asks a dedicated information

provider for defined pieces of information. The CIS will support criteria based on the EDXL DE

structure, e.g. time sent, target area, content key word. The information provider (CIS Core)

decides if the requestor is an authorized information consumer, and answers the request

with appropriate messages that have been stored in the Message Buffer. The request-

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 34 Public

response method can be combined with a notification mechanism that publishes the

existence of a new message but not the content.

3.4.1.5 CIS Service Registration

In order to deploy the CIS onto a given network (either being accessible from the Internet or not), CIS

servers will be installed and run on one or more nodes (depending on the network size) that will be

accessible from the rest of the nodes connected to the network. Tools will be added to CIS through

the specific adaptor by providing to the users the corresponding credentials (that might consist for

instance of an identifier and a password, depending on the implemented authentication and

authorization mechanism) and the locator of the specific network resource where the corresponding

CIS server is running. The users will be also provided with the specific interface to be followed in

order to correctly access CIS services.

For instance, in case of an implementation based on Web Services, application servers would be

installed in one or more network nodes where the specific Web Services would be registered.

Tool providers developing CIS adaptors would need to implement a Web Service client according to

the CIS Web SeƌǀiĐes͛ iŶteƌfaĐe, ǁhiĐh ǁould ďe defiŶed iŶ the WSDL available at the corresponding

address (URL). Authorized users would then be able to make use of the CIS services by calling the

operations defined in the mentioned interface.

3.4.1.6 CIS Data Security

Security shall be designed from the beginning in order to ease a security by design paradigm.

Therefore, CIS Core part embeds means to take in charge the first main security functionalities such

as authentication of the sender and authentication and authorization of the access to the data.

To meet CIS general purpose, generic enough solutions should be implemented, based on well-

known open standards.

Signature of EDXL messages shall be a good means to check the authentication of the issuer of the

data. CIS Core shall then behave as an Enforcement Point where the signature is checked before the

message could be sent to the CIS.

For Authorization, assuming that a common Identity Management Service is available, refinements

using the XACML standards could be proposed.

3.4.2 Common Information Space Architecture Options

As the Common Information Space defines the architecture to be implemented for the

intercommunication between different systems and the interexchange of Crisis Management related

information there are some options that can be used to implement the distribution channel between

different CM tools within CIS. This means that it is possible to select different CIS solutions based on

the chosen distribution option and also to interconnect different CIS solutions as it is possible to

check in the next sections. For the CIS distribution options the following candidates are presented:

 Common Shared Services

 Peer To Peer

 Enterprise Service Bus

These options are described in detail in the following sections.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 35 Public

3.4.2.1 Common Shared Services (CSS)

Socrates CSS (Common Shared Services) is a collaborative tool aimed at enabling the information

sharing between heterogeneous systems in a multi-organizational environment.

This information sharing is built on a Service Oriented Architecture based on the Web Services

technology and a publish-subscribe mechanism. The main features provided by the tool are:

• Publishing, updating, requesting and subscribing to structured and unstructured data.

• Validation of data in accordance to a specific hierarchy/taxonomy of metadata.

• Notifications to interested parties (subscribers) about availability of new data.

• Persistence (storage of data/metadata for later query and retrieval).

• Redundancy (by deploying several synchronized instances of the tool on the network).

• Authentication and authorization certification mechanism for connected systems.

The core infrastructure of the Socrates CSS tool enable its usage in different domains just by adding

new services that allow to transfer new kinds of data associated to a given metadata model. For

instance, a service aimed at exchanging data based on the TSO message structure (see section 3.1.3)

may be added in order to share situational awareness information in a crisis management domain.

Moreover, this approach also allows to easily include other domain specific value-added services in

order to improve the cooperation of involved parties in a collaborative environment (for instance,

services for tasking and/or management of available resources).

Figure 3: Socrates CSS architectural approach

Previous features make Socrates CSS a suitable candidate for the implementation of the CIS

described in section 3.4.1. They also make the tool be aligned to a great extent to the architecture

requirements specified in section 3.3.

3.4.2.2 Peer To Peer (P2P)

Peer-to-peer networks (P2P) are computer networks in which all computers in the network equal

work. This means that each computer offers to other computers services and can on the other hand

use by other computers offered resources, services, and files. Usually the data are distributed on

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 36 Public

many computers. The peer-to-peer approach is a decentralized concept, without a central server,

such as the Internet. Each computer of such a network can be connected to several other computers.

P2P Networks will be separated into 2 groups:

 Simple Peer To Peer Network or Self Organised Network (SON)

Simple peer-to-peer networks organize themselves as Self Organized Network (SON), they are

decentralized and have no server. In such a decentralized peer-to-peer network, the workgroup

employees provide mutually resources.

 Super Peer Network

A further development of peer-to-peer network with central server components is the super-peer

networks. In such a configuration particularly powerful peers are connected to super-peers that

provide the server services and organize the network. They are responsible for the routing of data

from the remote client to the backbone network.

3.4.2.3 Enterprise Service Bus (ESB)

An Enterprise Service Bus (ESB) is a software architecture model used for designing and

implementing communication between mutually interacting software applications in a Service-

Oriented Architecture (SOA). It handles the messaging between systems in a standard way. This

allows you to communicate with the "bus" in the same exact way across all your platforms. This

means that data files are passed to and from their destinations based on established guidelines that

are common to all parties sharing the information to ensure that the data maintains its integrity as it

is routed. The multi-language and multi-platform design of an ESB allows enterprises to process data

between applications from various sources.

3.4.3 Common Information Space Supporting Tools

As part of the Common Information Space definition is possible to include some supporting tools that

could help CIS solutions with specific functionality that is not part of the basic required CIS functions.

These are the CIS supporting tools that could help CIS solution with the following functions:

3.4.3.1 Cyris for Office 365

Cyris for Office 365 is a solution which protects data and manages identity and access for Office 365

and Azure data storage. It is meant for sensitive data which cannot be disclosed publicly and should

remain in an internal environment. It provides a solution for Owned and Managed Encryption with

Customer Keys, as opposed to other built-in Microsoft solutions.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 37 Public

Figure 4: Office 365 Security Control

Cyris comprises the two main features:

• Encryption capabilities for object storage over a Cloud

• A complete Authorization portal to manage identity and access, enabling a secure object

exchange over the Cloud.

Figure 5: Cyris functional view

Cyris behaves like a broker which proposes encryption and strong security architecture including:

• Encryption of the data according to various security profiles (algorithms, key length, type of

encryption, padding)

• Robust key management (CEK, KEK); Thales trusted crypto libraries

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 38 Public

• Use of certified HSMs (FIPS 140-3 compliant)

• Standards and security requirements, regulations and recommendations (CSA, ANSSI, RGS,

NIST)

3.4.3.2 INGEST

IŶgest pƌoǀides data tƌaŶsfoƌŵatioŶ aŶd pƌotoĐol adaptatioŶ Đapaďilities. It͛s ďased oŶ the TaleŶd
open source software. In the Common Information Space architecture, it could be the base for the

development of the adaptors.

Figure 6: Ingest based Common Information Space adaptor

Ingest provides tools to define and run adaptation at the following levels:

 Protocol with syntactic validation

 Format with syntactic validation

 Semantic

The protocol adaptation part is responsible on one hand of the technical link with the Driver tool of

legacy system and on the other hand of the technical link with the communication infrastructure of

CIS. It is responsible of the syntactic validity with the protocols definition.

The format adaptation part is responsible of the extraction and insertion of the data according to the

used data formats. It grants the syntactic validity with the formats definition.

The semantic adaptation part is responsible of the technical and semantic translation of the data

between formats and protocols. It could use the translation tables of the Common Information

Space.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 39 Public

3.4.4 Background from other projects

As part of the investigation work delivered to define CIS architecture other projects have been

analyzed with some benefits for the work of this task. The following projects were the most relevant:

3.4.4.1 ODYSSEY

Globalization has been accompanied by a dramatic increase in organized and transnational crime and

terrorism. It takes many forms and includes homicide, genocide, honour killings, trafficking in drugs,

weapons, smuggling of human beings and the laundering of the proceeds of crime. Such activities

present a threat not only to citizens and their communities, due to lives being destroyed by violence,

threats and intimidation, drugs and societies living in fear of organized crime; but also a global threat.

These threats undermine the democratic and economic basis of societies through the investment of

illegal money by international cartels, corruption, a weakening of institutions and a loss of

confidence in the rule of law. Enabling cooperation across the EU is vital. Whilst there is both political

and operational commitment to share data and there is no shortage of ballistics and crime

information data across the EU, there is currently no technical means to do this. ODYSSEY project [4]

progressed on the necessary research and development to fill this gap and provide a Platform to

demonstrate the effect and potential of an EU wide Platform using technical forensic data and crime

information. The Project developed a secure interoperable situation awareness platform for the

automated management, processing, sharing, analysis and use of ballistics data and crime

information to combat organized crime and terrorism.

The main aim of ODYSSEY project is to define a security layered architecture able to support a secure

Pan-European ballistics and crime information intelligence network aiming to tackle organized crime

and terrorism.

Figure 7: ODYSSEY Security Architecture Methodology

The approach used was based in three major aspects related to security architecture:

Deployment and

Infrastructure

Network

Host

Layer-by-Layer

Distribution

Application

Data
Security Framework

Authentication

Input Validation

Sensitive Data

Authorization

Cryptography

Audit & Logging

1

2

3

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 40 Public

 Deployment and infrastructure. At this level, the constraints imposed by the underlying

infrastructure-layer security and the operational practices in use should be considered.

 Security framework. The security framework includes considerations at both the

architectural and design level that have the most impact on security and where security

incidents often arise. The main categories included are: authentication, authorization, input

validation, exception management.

 Layer-by-layer analysis. Consider the logical layers of the system, and define the security

choices within application, distribution, and data access logic layers.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 41 Public

4 Experiments

4.1 EXPE 40: Enhanced contribution of airborne sensors

4.1.1 Objectives

The objective of EXPE40 is to integrate selected systems that are related to the airborne sensor suite.

In preparation of the following experiments (JE1, FD) the interoperability of the complete airborne

sensing system with its aerial and ground components will be verified through this experiment. With

regards to the ACRIMAS gaps, it addƌesses ŵaiŶlǇ the ͞EaƌlǇ WaƌŶiŶg Capaďilities͟ ;Gap ϰͿ aŶd
͞Acquisition of information from external sources͟ ;Gap ϭϬͿ.

4.1.2 Experiment Description

EXPEϰϬ is the ĐoŶduĐtioŶ of a ƌeal flight tƌial eǆeĐuted at DLR͛s ƌeseaƌĐh aiƌpoƌt iŶ BƌauŶsĐhǁeig. The
experiment will take place during the first two weeks of September 2015. During the first week,

DLR͛s ϯK Đaŵera system and its relevant onboard equipment will be attached to the RPAS

demonstrator. During the flights, the datalink connection between air-based and ground-based

components will be verified. On ground, imagery data will be shared between participating tools. The

following tools are going to be part of EXPE40:

 RPAS-demonstrator

 U-Fly

 3K camera system

 EmerT

 Sumo

 ZKI

During the experiment, all tools can share data through a common server. The aerial sensor data will

be provided in Geotiff format and shared over MTP. The ZKI creates all information in its Service Lab

at the Earth Observation Center in Oberpfaffenhofen and provides all derived information such as

flood masks and flood maps (2D and 3D) via a FTP server that is hosted at the Mobile Traffic Data

Platform (TDP).

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 42 Public

Figure 8: EXPE40 Data Exchange

IŵageƌǇ data ǁill ďe ǀisualized thƌough the use of DLR͛s ƌeseaƌĐh gƌouŶd ĐoŶtƌol statioŶ U-Fly and

DLR͛s ĐeŶteƌ foƌ satellite iŶfoƌŵatioŶ ZKI. DLR͛s tools EŵeƌT aŶd Suŵo ǁill also take iŶto aĐĐouŶt
extracted traffic information.

The experiment will illustrate aerial sensor processing in a flooding crisis: A nearby lake (Tankumsee)

will be used as a basis for a simulated flooding. Based on first geographical information about the

extensions of the flooding, U-FLY will determine an optimal flight path for the RPAS demonstrator to

collect real-time sensor images of the affected area. During the RPAS-flight the sensor data will be

provided to the ground systems. ZKI will provide flood mapping images based on the collected aerial

images, which will be shared with U-FLY, EmerT and SUMO. A second flight with a scan pattern over

the flooding area and nearby major road networks (e.g. highway A2) will be dynamically planned and

executed to:

 Detect unusable traffic infrastructure (EmerT/SUMO)

 Provide efficient route planning based on traffic data (EmerT/SUMO)

 Illustrate sensor adaptive flight planning (e.g. person detection) (U-FLY)

During the experiment, the data exchange will be carried out independently from the Common

Information Space (CIS). The connection via CIS will be established and tested within the preparation

and execution of EXPE44. If the flight trials are successfully conducted, collected data can be stored

and used during this EXPE44.

3K Camera System

ZKI EmerT/Sumo

U-Fly

file:///C:/Users/zill_ju/Documents/DRIVER/SP4/WP42/D42.21/DRIVER SP4 1st round of experiments - DLR - 3K tool.pptx
file:///C:/Users/zill_ju/Documents/DRIVER/SP4/WP42/D42.21/EmerT/DRIVER SP4 1st round of experiments - DLR - EmerT_2014-11-21_v02.pptx
file:///C:/Users/zill_ju/Documents/DRIVER/SP4/WP42/D42.21/DRIVER SP4 1st round of experiments - DLR - UFly.pptx
file:///C:/Users/zill_ju/Documents/DRIVER/SP4/WP42/D42.21/DRIVER_SP4_1st_round_of_experiments - DLR - ZKI.pptx

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 43 Public

Tool Data Flow Direction Format/protocol Transformation

U-Fly Georeferenced

aerial and

satellite images

Input geoTiff / MTP

(sensor data)

 Validated Flight

Plans

Output XML (flight

planning)

3K Camera

System

Georeferenced

aerial images

Automatically

extracted traffic

parameters from

the aerial images

(vehicle

positions, driving

direction, and

speed)

Output Geotiff via ftp

PostGresQL

database entries to

EmerT tool

EmerT Georeferenced

aerial images

(3K)

Automatically

extracted traffic

parameters (3K)

Road-network

(OSM / NAVTEQ)

Traffic data

Input Geotiff via ftp

PostGresQL

database entries to

EmerT tool

Database import

Database import

 Aerial images

and traffic data

to support the

analysis of

situation

Isochrone-map

risk routing

which includes

likelihoods of

risks for possible

routes

Output PostGresQL

database

OGC web services

and REST Services

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 44 Public

Tool Data Flow Direction Format/protocol Transformation

Traffic-data

fusion and

prediction

Sumo Road-network

Traffic Data

Simulation

Scenario

Input PostGresQL

database

XML

ZKI (1) Flood mask,

(2) Flood maps,

(2D, focus on3D)

Upload on FTP

hosted at Mobile

Traffic data

platform (TDP)

Exchange via FTP

protocol: (1) as

ESRI Shape file

(*shp), (2) 2D maps

as GeoTIFF,

JPEG+JGW, and

optional

KML/KMZM; 3D

representation is

provided as PDF

Table 5: EXPE 40 Data Flow

4.2 EXPE 41: Operational Data Lift

The objective of EXPE41: Operational Data Lift, is to optimize the information workflow between

local and higher levels of command. It is designed in the perspective of WP46, and SP6 Final Demo

which will be also hosted by Valabre.

The experiment will be prepared and executed with Pole Risques and EPLFM at Valabre (France), in

November 2015. It is addressing an operational gap which was described by an EMIZ officer in Aix-

en-Provence during the Initial Inventory of Tools. With regards to the ACRIMAS [3] gaps, it addresses

ŵaiŶlǇ the ͞UŶdeƌstaŶdiŶg the ƌelief effoƌt as a ǁhole͟ Gap ϲ.

The following SP4 tools will be involved in Experiment 41:

 Local level: Lupp, Asphodèle

 Regional level: Large Event, COP

 Political level: Crisis Wall

The main SP2 tool involved will be the new Simulator (EPLFM), which enables the simulation of crisis

management operations on a large fictitious Island (Valabre Island).

The scenario will be a complex crisis: forest fire with industrial cascading effect. At the local level, the

actors will be Fire Brigade, Health and Police. The experiment will be structured like an exercise

where local, regional and political level will be played, the major focus being the elaboration of the

Common Operational Picture (at regional and political level). The Common Operational Picture will

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 45 Public

be elaborated on Large Event and Cop Tools at regional level by merging information sent from local

level by Asphodèle and LUPP tools.

The experiment process will consist in playing the same scenario twice: once with tools supporting

the elaboration of the Common Operational Picture, and once without tools, following the current

manual procedure. In manual procedure, the systems at each level are not connected and the

information about the situation is sent by voice communication or manual exchange like e-mail.

The time and effort required will be measured and compared for both process (manual and

supported by tools) and the quality of information produced in the Common Operational Pictures will

be compared to the ground truth known by the simulator of EPLFM. Relevant criteria and indicators

will be defined with end-users.

Figure 9: EXPE 41 Operational Data Lift

The following Table 6 lists the data flows to be used during the experiment 41.

The direction column points out the direction of the information.

The format/protocol column describes the format and the protocol to be used to exchange the

information.

The transformation column point out the transformations needed to comply with the common

architecture.

Tool Data flow Direction Format/protocol Transformation

Crisis Wall Situation Input To be defined

Large Event Situation Input EDXL CAP

Protocol to be defined

 Situation Output To be defined

COP Situation Input

EDXL CAP

To be confirmed

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 46 Public

Tool Data flow Direction Format/protocol Transformation

Asphodèle Situation Output To be confirmed

LUPP Situation Output EDXL CAP

To be confirmed

Table 6: EXPE 41 data flow

4.3 EXPE 42: Interaction with citizens and volunteers

4.3.1 Expe 42 goals

EXPE42 aims at the evaluation of usability and value of tools and processes for the interaction of

professional responders with citizens in the context of specifically designed scenarios, and to explore

the capabilities of the tools to integrate in the system of systems. The subsequent Transverse (WP46)

and Joint (WP63, WP64, WP66) experiments are based on the results of EXPE42 and will use selected

tools in combination with tools and procedures of the other work packages and evaluate the

integration of tools, data and procedures in a comprehensive, realistic disaster scenario.

The iŶteƌaĐtioŶ of ƌespoŶdeƌs͛ oƌgaŶisatioŶs ǁith ĐitizeŶs aŶd ǀoluŶteeƌs is ƌeleǀaŶt foƌ ďoth, SPϯ
and SP4. SP3 is interested how citizens can be supported contributing to the crisis handling and how

relevant information can be effectively transmitted to the public before and during a crisis. SP4

however investigates how the knowledge and information available at citizens can be leveraged for

increasing situational awareness, how crisis managers and commanders can control and direct the

cooperativeness of volunteers and how they can be enabled to broadcast warnings and situational

reports to the affected people.

Interaction with citizens and volunteers as experimented in Expe42 covers two main aspects:

1. Crisis communication with citizens during all phases.

 Broadcast of information (warnings and current situation reports) to the public by the Crisis

Managers, based on the situation awareness and common operational picture

 Collect information from the public that amends the available situation awareness,

represented in the common operational picture

 from social media analysis

 querying information from volunteers (citizens as sensors)

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 47 Public

Figure 10: EXPE42 Crisis Communication

2. Organising and tasking of spontaneous and pre-registered volunteers during preparedness

and response phase

 Manage volunteers that are not affiliated to responder organisations; organisation and

activation of pre-organised volunteers.

 Assign tasks to the volunteers that can be performed in a safe way without guidance and

supervision by professional responders; micro-tasking and crowd tasking.

Figure 11: EXPE42 volunteer management

Cƌoǁd souƌĐiŶg,
 soĐial ŵedia aŶalǇsis

PuďliĐ
ǁaƌŶiŶg aŶd aleƌtiŶg

AĐtiǀatiŶg & taskiŶg
seleĐted ǀoluŶteeƌs

Task feedďaĐk
aŵeŶdiŶg situatioŶ aǁaƌeŶess

Cƌisis ĐooƌdiŶatioŶ

AĐtiǀated ǀoluŶteeƌs

suppoƌtiŶg ƌespoŶdeƌs

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 48 Public

4.3.2 Expe 42 set-up

Expe42 will consist of two small experiments, concentrating on volunteer registration, activation and

crowd tasking, and of a large event including crowd tasking and crisis communication. The latter will

be a large flood scenario, using the THG platform

The tool COP provides the situation map with the common operational picture providing a source of

information to be transferred to the public, and as decision support for the crisis manager with

volunteer management. The crowd tasking results are also displayed as an information layer in COP.

CrowdTasker (management tool for the CM and mobile app for the volunteers) is the tool for

volunteer registration, activation and tasking.

The crisis communication will be exercised with the tools GDACSmobile and SafeTrip.

The tools DEWS and MEGO will create the (simulated) alerts and flood warnings that form the

scenario background for THG exercise.

4.3.3 Expe 42 information space

The following Table 7 shows the integration of tools and the planned data flow.

Information Provider
Type of

Information
Transfer

Information

Consumer

DEWS water levels CAP MEGO

MEGO flooded areas ShapeFile COP

COP warnings for areas CAP or manually SafeTrip

COP warnings for areas CAP or manually GDACSmobile

GDACSmobile social media analysis CAP COP

COP situation awareness manually CrowdTasker

CrowdTasker task feedback (photos,

questionnaires)

EDXL

OtherObject

COP

Table 7: EXPE 42 Integration of tools

4.4 EXPE 43: From Planning to Tasking

4.4.1 Components Services

EXPE 43 is focused on the tasking and management of resources during preparedness and response

phases in a cross-border crisis scenario.

In order to enable effective crisis preparedness and response including tasking and resource

management activities, efficient coordination and cooperation as well as structured command and

control is required amongst the involved organizations, agencies and other parties. In particular, it

should be possible to:

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 49 Public

• Register all organisations and resources involved in the management of crisis events.

• Build a command hierarchy in which the role and place of all involved organizations is clearly

established.

• Share operational information and a common situational awareness on crisis events.

• Task and track the available resources.

The previous capabilities will be supported by the following basic services:

• Resource service.

• Event service.

• Tasking service.

• Situation service.

The resource service is used to manage resources, from their registration into the CM organizational

structure to their elimination from it. It allows constructing and maintaining the resource model of

the Crisis Management body, composed by all the entities closely cooperating in the management of

crisis events.

A resource may be any organization (governmental, non-governmental or private), person (either

professional responder or volunteer), equipment (vehicles, sensors, portable information systems),

infrastructure (warehouse, operations center, forward operating base) or whatever other entity that

performs a role in Crisis Management. These resources may be organized following a hierarchical

structure that represents the command hierarchy at a given moment in time.

The resource service also allows exchanging all the relevant information about registered resources,

such as their capabilities, operational status or geographical position.

The event service is used to share information about crisis events, enabling the development of a

common operational picture. It allows registering the occurrence of an event, tracking its evolution

and compiling all the relevant information about it (such as the affected geographical area, its

context, etc.). Events may be also organized following a hierarchical structure, in which some events

are presented as sub-events of other ones.

The tasking service will be used to manage tasks from their creation to their completion. It allows

creating and assigning tasks as well as exchanging all the relevant information about them (such as

their status). Tasks may be associated and assigned respectively to the events and resources that

have been already registered. A given organization might task any resource under its command,

according to the CM organizational structure built by means of the resource service.

 Resource service Event service Tasking service

Register all organisations and resources involved
in the management of crisis events 
Build a command hierarchy in which the role and
place of all involved organizations is clearly
established



Share operational information and a common
situational awareness on crisis events 
Task and track the available resources  

Table 8: Contribution of services for coordination and cooperation and structured command and control

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 50 Public

Data gathered by means of the three previous services would be integrated into a whole that relates

events, resources and tasks. This whole represents a complete and coherent picture of the

operational situation, which will be characterized at any given moment by:

• The ongoing events,

• The tasks aimed to handle the events and

• The resources that have been made available to handle the events (and thus, those which

may be assigned previous tasks).

The situation service allows getting the complete situation status at any given moment in time. This

service is intended to be used mainly by those tools that, while not specifically devoted to tasking,

resource or event management, may need to have info about the situation (e.g., simulation or

analysis tools).

4.4.2 Implementation Description

The experiment will include two main use cases, being the first one focused on the preparedness and

planning phase and the second one on the response phase:

• Capacity building and capacity mapping (focused on crisis preparedness phase). The users

will define the resource model of the CM organizational structure, by registering all

organizations and resources that are involved in (or made available for) the management of

crisis events. A command hierarchy, in which the role and place of all involved organizations

and resources is clearly established, will be defined.

Contingency plans will be also defined for the crisis event(s) associated to the specific

scenario to be developed in the experiment.

• Tasking and capacity monitoring. The users will exchange operational information (in order

to share a common situational awareness) and task and track the available resources under

their command. The activities will include, among others:

o Notification of crisis events by on-field resources to their command. This information

(or at least the part which is relevant) will be spread amongst levels.

o Assignment of tasks to resources in order to handle the crisis events. Resources will

report on their assigned tasks: the information they provide will be monitored by

taskers at the corresponding level, which may then distribute this info to other levels

if necessary.

o Resources will report also on their status (either they have been assigned tasks or

not), which will be monitored by both the taskers and the resource managers. These

will then make the corresponding decisions to continue tackling the crisis.

These activities will be done iteratively during the response phase.

The eǆpeƌiŵeŶt͛s SǇsteŵ of SǇsteŵs ;SoSͿ suppoƌtiŶg the aĐtiǀities assoĐiated to these use Đases ǁill
integrate the following tools: IO-DA Suite (ARMINES), LUPP (MSB), SITRA (FOI), PROCEED (ITTI),

PROTECT (EDI), ESS (GMV Sistemas) and the Socrates suite – composed by Socrates CSS, Socrates

FR, Socrates OC and Socrates TSK tools – (GMV).

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 51 Public

Figure 12: EXPE 43 SoS architecture

As shown in Figure 12: EXPE 43 SoS architecture, the central element of the SoS is the Socrates CSS

tool, which builds up a Service Oriented Architecture that implements the services specified in

previous section.

EXPE ϰϯ͚s use cases are intended to involve several (at least, two) organisational levels (either from a

geographical perspective, that would for instance include international, national or regional levels, or

from a command perspective, including the strategic, tactical and operational levels), and different

organisations and actors (performing one or more of the following generic roles: resource, resource

manager, analyst, decision-maker, tasker and taskee) are expected to be involved. The specific

organisations and actors are still to be agreed with the platform providers, MSB (Sweden) and ITTI

(Poland), and might consist, for instance, of responder agencies such as firemen or medical staff and

actors such as strategic, tactical or operational commanders.

4.5 EXPE 44: Enhanced logistics

4.5.1 Components Services

The aim of the Logistics Experiment is to model and simulate several relief chain setups in order to

measure its performance as well as giving support to logistics experts in the response of the crisis.

This will be done with a series of simulations that will provide insights in identifying bottlenecks in

the preparedness of the crisis as well as improvement potentials as best routes to move goods,

people or any resource during the crisis response. Additionally we will test a protocol (currently

under research) for crisis situations, which has been identified as one of the gaps in logistics in this

context, as some end-users as UME
13

.

The purpose of this experiment is to explore a logistics framework that provide logistics crisis

managers to overcome problems associated with coordinated logistics operations and supporting

crisis preparedness by evaluating the efficiency and capacity of storage and transport of resources.

13

 UME: Spanish Military Emergency Unit

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 52 Public

Figure 13: EXPE 44 involved tools

The expected outcomes of the experiment are:

 From a strategic view, exploring the capabilities of the logistics infrastructure for the

management and oƌgaŶizatioŶ of the logistiĐs ƌesouƌĐes ;people, goods…Ϳ
 From a technological view, validate the interface between different IT assets (knowledge

sharing through CIS)

 Exploring systemic risks and vulnerabilities to global supply chains and transport network and

an associated action protocol for crisis management

The experiment will be defined and executed together with THW at Stuttgart (Germany), in March

2016. The scenario will be a flood crisis on the Magdeburg area, as they are a flood risk area. The

experiment is in the process of being structured, but it be based on the preparation of the crisis with

an exercise of preparedness of the current logistics in the area, as well as the coordination between

logistics actors and response crisis managers (in this case, municipalities are responsible of the

management of the crisis). The experiment will be based on the evaluation and comparison of the

actual process with process with the support of tools and strategic preparation

The following SP4 tools will be involved in Experiment 44:

 Preparedness level: Anylogic, Humlog, Delphi

 Response level: Emer-T, SUMO, U-Fly, DSS

4.5.2 Implementation Description

One of the success criteria of the experiment is the validation and testing logistics crisis management

protocol and tools, including the elaboration of recommendation actions to logistics stakeholders

and public entities. To achieve this goal, all tools involved in the experiment should be part of the CIS

implementation decided for the experiment and able to share information

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 53 Public

Figure 14: EXPE 44 Logistics Experiment

All the involved tools in the experiment will develop their own CIS Connector to manage the

communication between CIS and the tool, as well as translate proprietary protocols to standards (if

needed). All tools will take as starting point, the templates provided by SP4.

Regarding the implementation of the CIS Core and Distributor systems, the experiment will analyse

all the implementations provided in the context of SP4 and described in this doc, to check which one

fits better in the IT architecture of the Logistics Experiment. We will take into account the complexity

and maintenance of the CIS implementation to be used as well as the ease of use or connectivity

mechanisms provided to add tools to the CIS.

4.6 EXPE 45: Situation assessment and Crisis dynamics

This experiment aims at assessing the use of tools during the analysis of events leading to a potential

crisis. This will involve the exploiting of existing legacy systems; therefore, the JRC platform European

Crisis Management Laboratory (ECML) will be used, since it is already acting as a backend of the

Emergency Response Coordination Centre (ERCC).

Some of the tools are already available in the DRIVER project. The tools concurring to the CM process

will improve the capacity to exploit the existing systems, heading toward a closer integration.

It will be therefore necessary to evaluate the results in terms of the aggregated products of the tool

provided to a later stage of the CM process. The value of the analysis is in fact the enrichment of the

information together with the extraction of the more relevant information to assist the decision

making process.

Additionally, JRC can rely on resources like the following:

 Natuƌal disasteƌs͛ ŵodels ;tsuŶaŵi, stoƌŵ suƌge, ĐǇĐloŶe iŵpaĐt, floods as desĐƌiďed iŶ the
test-bed tools catalogue);

 Large databases of historical and simulated scenarios;

 Large datasets including satellite and aerial imageries.

The platform integrates also simulators to feed crisis management tools with real-like data.

There are in fact, different levels of use interconnected with each other and with external system:

• Local decision makers (local)

• Regional managers

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 54 Public

• National Civil Protection Authorities

• Supranational (ERCC)

Each user has specific needs resolving in custom outputs. The experiment will evaluate the tools also

in terms of their capacity to serve more than one level and to interoperate with the different levels.

4.6.1 Tools

The following Table 9 provides a short description of the tools
14

.

Partner Tool TRL Short description

Thales Large Event 8

Collaborative Situation awareness for higher level crisis

management staff.

Provides collaborative workspaces for each crisis with a

cartographic situation, a daybook, information sharing and

high level task management capabilities.

Includes mobile extension enabling staff on the field to report

and share information.

Thales Ingest 8

Graphical ETL tools. Transforms structured messages to

another format / standard.

User friendly Graphical definition of mapping jobs.

FRQ COP 6

Shared situational awareness tool with a GIS based user

interface.

Collection of data from various data sources, presentation of

all input data on a map.

Each dataset is presented in form of a layer which can be

switched on/off by the user. Various options to filter and

search for data. A mobile version for tablet PCs enables staff

on the field to share information.

GMV
Socrates

CSD
7

Implements a distributed database that provides a service

based interface to publish, update, query, download and

subscription of structured and unstructured products.

ATOS DEWS 7

Principal focus on Tsunami Early warning (for authorities,

emergency management forces, rescue services and the

public) providing reliable hazard detection and effective

warning dissemination. The system can be adapted for other

hazards such as forest fires, floods, landslides, volcanoes, etc.

The key operational functions of the early warning system are

to support real-time monitoring through access to sensor

networks, timely decision making, and customised

14

 See: ͞DRIVER_SP4_ synthesis of tools description͟: https://driver.atosresearch.eu/index.jsp?uuid=96c8d68d-

ecde-42a9-9828-f37520e53ad3 . This list has been revised after the first round of experiments and some new

tools has been included in order to achieve the goals of the experimentation.

https://driver.atosresearch.eu/index.jsp?uuid=96c8d68d-ecde-42a9-9828-f37520e53ad3
https://driver.atosresearch.eu/index.jsp?uuid=96c8d68d-ecde-42a9-9828-f37520e53ad3

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 55 Public

Partner Tool TRL Short description

dissemination of warnings messages.

FOI SITRA 6

SITRA is a tools suite accessed through a front-end for

situation reasoning and risk assessment:

* Operational Picture with relevant information.

* Risk/threat model development tool: create models that

can be used to predict events, get early warnings and assess

risks.

* Context Aware Reporting system: Android app that can be

used for reporting events/incidents by using formal terms

defined in an ontology.

HKV Dashboard 9

Presents data and information from all sorts of sources in one

overview on mobile devices, whilst the data history is left at

its source. The information is presented in several

visualisation types (graphs, text, gauges) The dashboard

screens are user oriented and preformatted by the

information manager.

JRC Crisis Wall 7

Gathers live data from various sources of crisis information

(GDACS, EMM, ECHOFLASH.) and stores it.

A web client tailored specifically for use on a large wall touch

screen allows the user to search, filter, group and organise

this data into events. Users can also create events directly,

add analysis and populate them with items.

Event reports can be generated and shared.

Data from the CrisisWall can be viewed through mobile

applications.

JRC TAT 6 Tsunami Analysis Tool

MSB RIB 8

Decision support database and search engine for first

responders with data on most relevant aspects of

approximately 3700 toxic substances

GEO-APP LAMPO 7 Landslide Assessment through Multi Parameter Observations.

Its aim is to gather in real-time sufficient information from

different sources in order to help decision makers in finding

out if and when a landslide is approaching its collapse. It has

been developed in Air (Adobe integrated runtime).

SELEX DSS 7 Decision Support System aim to collect Integrate and

Compute heterogeneous data, from various sensor networks

in order to strengthen control and monitoring systems

OBSERVIS OBSHARE 9 It is a Tactical/Situational Awareness System (T/SAS) which

collects, visualizes and shares

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 56 Public

Partner Tool TRL Short description

information between field and command personnel through

browser based user interfaces and mobile

applications. It is a perfect tool for sharing of information in

inter-agency operations

Table 9: EXPE 45 Tools

In order to provide a comparative analysis among the tools, we identified 3 main categories: while

the first and the second pertain respectively to collaborative situation awareness and early warning

tools (e.g. COP, CRISIS WALL, SITRA, DEWS, TAT etc.), the third refers more to communication and

information related-tools (RIB, LAMPO, INGEST).

The main hypothesis we aim to verify are:

1. The tools will improve the capacity to exploit existing systems;

2. The tools will improve Decision Making in Crisis Management (e.g. improve the extraction of

relevant information);

3. The tools will improve information sharing and flows.

Considering the complexity of the experiment and in order to carry out efficient experimentation

activities, the experiment is split into three different levels of analysis. The common aim is to

produce a valuable outcome (e.g. reports, graphical interfaces, alert messages) and to take informed

decisions on the basis of the reports produced. While type one deals with the understanding of a

report written on a given scenario, type two is more concerned with the interpretation of a layout

structure. The third analysis is similar to the first with a difference pertaining to decision making. In

this case, in fact, the report will be read, interpreted and evaluated by a high level decision maker

(e.g. ERCC).

Additionally, expected outcomes (technical and non-technical) and verified (through evidence-based

dataͿ outĐoŵes ǁill ďe aŶalǇzed. IŶ the ĐoŶteǆt of EXPE ϰϱ, tools aƌe ĐoŶsideƌed as ͞soĐio-teĐhŶiĐal͟
apparatuses, therefore both technical and social aspects will be analyzed.

Furthermore, these questions are part of the methodological design:

• Does the tool contribute to the function it is supposed to contribute to? (Indicators to be

defined)

• How are tasks performed?

• Are these tools of interest to a certain user group that is currently not using them?

• What is the added value of each tool? (Indicators to be defined)

• What is the level of complexity of each tool?

• Is the tool user friendly? If yes, to what extent?

There will be no unfair comparison with tools the evaluators are already familiar with. The

eǀaluatoƌs͛ teaŵ ǁill ĐhaŶge aĐĐoƌdiŶglǇ to the sĐope aŶd the topiĐ of the tool. It ǁill ďe opeŶ to all
DRIVER partners volunteering to apply for it.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 57 Public

The design of the experiment will involve the tool provider, in oƌdeƌ to Đƌeate aŶ ͞ad hoc͟ test
including the evaluation criteria (common criterion: technological maturity level).

DRIVER Tasks involved (main & supporting):

• T43.1 Damage and Needs Assessment

• T43.3 Crisis dynamics & early warning

• T43.5 Shared situation awareness

• T44.1 Capacity Building and Capacity Mapping Tools

• T45.2 Collaborative tools (supporting)

• T45.3 Structured information exchange (supporting)

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 58 Public

5 Conclusion

DRIVER involves several groups of tools of different kinds. Some of them will be used together to

carry out experiments in the scope of SP4, which will be useful for the Joint Experiments as well.

The common architecture design has been addressed and presented to enable the different tools

and services to connect together. Firstly, we introduced the available technologies and standards to

show the options available to implement the common architecture. Secondly, we presented the

selected technologies and standards and introduced the rationale behind the selection. The

architecture definition was described as well as how to implement the common communication

space to exchange information between the different tools. Finally we presented an early report on

how the different SP4 experiments are using the common architecture.

The main purpose of the document was successfully addressed by describing the Common

Information Space as the integration architecture that all experiments coming from SP4 will use to

interconnect the different tools. The main topics for this process were:

• List and describe the available technologies, from the Information and Communication

Technologies space and from the Crisis Management space. Including a short analysis on the

potential benefits and disadvantages of using them as part of the integration platform.

• Short list of the selected technologies, focusing on Crisis Management technologies and

standards, as the available tools to build a System of Systems that could be used to integrate

the different Crisis Management tools. This task was focused on the description of each

standard so that the reasons for using them as part of the integration architecture are

explained.

• With the selected tools the Common Information Space is presented and described in the

internal architectural components. The main focus is on the CIS Adaptor and its components

that are used to enable the Tools providers to connect to the CIS and use it to exchange

information. These components are the Connector, the Core and the Distributor.

• As part of the CIS description, the optional implementation technologies for the CIS

Distributor are presented, including Common Shared Space, Peer2Peer and Enterprise

Service Bus. Other supporting tools are also described to enrich the CIS architecture

functionality.

• Finally, the SP4 experiments are described with the focus on the actual implementation state

as part of each experiment path to implement the CIS architecture to interconnect the

different tools.

A deeper description and more detailed information are going to be included in the next iteration of

this document.

More details will be provided during the next tasks of the WP42 in close cooperation with WP46 and

considering as well the SP2 test-bed architecture.

Next steps will be the following:

• Define how the tools will cooperate with each other in the experiments:

o Identifying the data that will be shared

o The formats they are in compliance with and

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 59 Public

o Other technical constraints they might have

 Define the standard interface implementation that is required by the tools to implement the

CIS Adaptor, the common interface that each tool will need to implement in order to be

connected to the CIS

 Get deeper information and requirements description for each one of the defined interfaces

within CIS architecture.

o Approaches coming from other European Commission projects such as EPISECC

 Investigate and define on the required security requirements for the integration of each and

every tool that uses CIS

o Approaches coming from other European Commission projects such as ODYSSEY

 Progress into the implementation of CIS that is performed by each experiment.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 60 Public

Annex 1 SOA

SOA Architecture

Service Oriented Architecture (SOA) is a key concept of modern information technology. Current

Crisis Management software has to cope with the heterogeneous nature of the services, addressing

complex issues such as distributed software, application integration, diverse platforms and protocols,

and various devices. SOA along with Web Services allows seamless integration by abstraction from

complexity thus providing an approach to deal with the challenges of such complex software

environments.

Service Oriented Architecture (SOA) is an architectural style based on loosely coupled interacting

software components that provide services. A service is a piece of functionality made available by a

service provider in order to deliver end results for a service consumer. A service consumer sends a

service request to a service provider. The service provider returns a response to the service

consumer containing the expected results. In Service Oriented Computing (SOC), services are the

crucial element to develop applications. SOC applies SOA to organize software applications and

infrastructure into a set of interacting services.

SOA applies a service model consisting of a set of interconnected services communicating through

standard interfaces and messaging protocols. Basic services, their descriptions and basic operations

as publish, discovery, selection, and bind constitute the basic SOA.

SOA constitutes a concept to provide services to clients through published interfaces and to

coordinate interaction through the exchange of messages. Generally, the basic SOA describes the

relationship between three kinds of participants: the service providers, the registry, and the service

requestors. The service represents a logical separation of declaration and implementation, its

implementation is hidden from the client and can be subject to changes which may not influence the

client so long as the service interface stays unchanged.

An important mechanism in a SOA is the Dynamic Discovery of services:

The interaction model of the basic SOA consists of three key players, the service providers, the

service requestors, and the intermediating directory service. First, the service providers register with

the directory service, then clients can query the directory service for providers and browse the

exposed service capabilities. Typically a directory service supports:

• a look-up service for clients

• scalability of the service model: services can be added incrementally

• dynamic composition of the services: the client can decide at runtime which services to use

SOA Architectural Constraints

In order to achieve loose coupling between components, SOA is based on two major architectural

constraints where:

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 61 Public

1. Interfaces are defined for all participating services. Only generic semantics are encoded at

the interfaces. The interfaces should be universally available for all providers and consumers.

2. Messages are described and constrained by an extensible scheme and delivered through the

interfaces.

Interfaces

The interface constitutes a contract defining the functionality of the service in a platform-

independent manner. This implies that the invocation mechanism (protocols, descriptions, and

discovery) must comply with widely accepted standards enabling a client to use the service from

anywhere applying any OS or programming language.

A discovery service (e.g. a directory service) provides clients with a look-up mechanism supporting

dynamic locating and invoking.

Services are self-describing. They advertise the service capabilities, interface, behavior, and quality.

Services may publish several descriptions. The service interface description publishes the service

signature, e.g. its input, output, and error messages. The (expected) behavior is described by the

behavior description and the QoS (Quality of Service) describes both functional and non-functional

service quality attributes, e.g. performance, security attributes, reliability, etc.

Services exhibit several other properties. They are stateless, this means that users can use them

without knowing the current conditions of the service, the service maintains its own state. The

interaction between services is loosely coupled, that is the services must not share common modules

(e.g. GUI or storage) or data model. The usage of services is location-transparent, e.g. clients do not

have to know if the service is local or only accessible over a network. These properties enable and

support rapid and low-cost composition of services for distributed applications.

Messages

Message passing is a form of communication for inter-module interaction. Processes communicate

with each other by sending and receiving messages, where each sent mechanism must match the

corresponding receive mechanism. Services communicate with each other and with consumers using

messages. The service interface defines the messages a service can process. To achieve platform-and

language-independency, messages are typically constructed using XML documents that comply with

the corresponding XML Schemas. In contrast to Remote Procedure Call (RPC) the mechanism is an

asynchronous communication, directly supported by message passing.

A schema limits the vocabulary and structure of messages. An extensible schema allows new versions

of services to be introduced without modifying existing services.

RESTful Web Services

More than a decade after its introduction, REST has become one of the most important technologies

for Web applications. Its importance is likely to continue growing quickly as all technologies move

towards an API orientation. Every major development language now includes frameworks for

building RESTful Web services. As such, it is important for Web developers and architects to have a

clear understanding of REST and RESTful services. While REST stands for Representational State

Transfer, which is an architectural style for networked hypermedia applications, it is primarily used to

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 62 Public

build Web services that are lightweight, maintainable, and scalable. A service based on REST is called

a RESTful service. REST is not dependent on any protocol, but almost every RESTful service uses HTTP

as its underlying protocol.

Every system uses resources. These resources can be pictures, video files, Web pages, business

information, or anything that can be represented in a computer-based system. The purpose of a

service is to provide a window to its clients so that they can access these resources. Service architects

and developers want this service to be easy to implement, maintainable, extensible, and scalable. A

RESTful design promises that.

As a programming approach, REST is a lightweight alternative to Web Services and RPC. Much like

Web Services, a REST service is:

• Platform-independent (you don't care if the server is Unix, the client is a Mac, or anything

else),

• Language-independent (C# can talk to Java, etc.),

• Standards-based (runs on top of HTTP), and

• Can easily be used in the presence of firewalls.

Like Web Services, REST offers no built-in security features, encryption, session management, QoS

guarantees, etc. But also as with Web Services, these can be added by building on top of HTTP:

• For security, username/password tokens are often used.

• For encryption, REST can be used on top of HTTPS (secure sockets).

• ... Etc.

One thing that is not part of a good REST design is cookies: The "ST" in "REST" stands for "State

Transfer", and indeed, in a good REST design operations are self-contained, and each request carries

with it (transfers) all the information (state) that the server needs in order to complete it.

Every system uses resources. These resources can be pictures, video files, Web pages, business

information, or anything that can be represented in a computer-based system. The purpose of a

service is to provide a window to its clients so that they can access these resources. Service architects

and developers want this service to be easy to implement, maintainable, extensible, and scalable. A

RESTful design promises that and more. In general, RESTful services should have following properties

and features:

• Representations

• Messages

• URIs

• Uniform interface

• Stateless

• Links between resources

• Caching

Architecture Based on SOA

The perceived value of SOA is that it provides a powerful framework for matching needs and

capabilities and for combining capabilities to address those needs.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 63 Public

Visibility, interaction, and effect are key concepts for describing the SOA paradigm. Visibility refers to

the capacity for those with needs and those with capabilities to be able to see each other. This is

typically done by providing descriptions for such aspects as functions and technical requirements,

related constraints and policies, and mechanisms for access or response. The descriptions need to be

in a form (or can be transformed to a form) in which their syntax and semantics are widely accessible

and understandable.

Whereas visibility introduces the possibilities for matching needs to capabilities (and vice versa),

interaction is the activity of using a capability. Typically mediated by the exchange of messages, an

interaction proceeds through a series of information exchanges and invoked actions. There are many

facets of interaction; but they are all grounded in a particular execution context – the set of technical

and business elements that form a path between those with needs and those with capabilities. This

permits service providers and consumers to interact and provides a decision point for any policies

and contracts that may be in force.

The purpose of using a capability is to realize one or more real world effects. At its core, an

iŶteƌaĐtioŶ is ͞aŶ aĐt͟ as opposed to ͞aŶ oďjeĐt͟ aŶd the ƌesult of aŶ iŶteƌaĐtioŶ is aŶ effeĐt ;oƌ a

set/series of effects). This effect may be the return of information or the change in the state of

entities (known or unknown) that are involved in the interaction.

We are careful to distinguish between public actions and private actions; private actions are

inherently unknown by other parties. On the other hand, public actions result in changes to the state

that is shared between at least those involved in the current execution context and possibly shared

by others. Real world effects are, then, couched in terms of changes to this shared state. The

expected real world effects form an important part of the decision on whether a particular capability

matches similarly described needs. At the interaction stage, the description of real world effects

establishes the expectations of those using the capability. Note, it is not possible to describe every

effect from using a capability. A cornerstone of SOA is that capabilities can be used without needing

to know all the details.

This description of SOA has yet to mention what is usually considered the central concept: the

seƌǀiĐe. The ŶouŶ ͞seƌǀiĐe͟ is defiŶed iŶ diĐtioŶaƌies as ͞The peƌfoƌŵaŶĐe of ǁoƌk ;a fuŶĐtioŶͿ ďǇ one

foƌ aŶotheƌ.͟ Hoǁeǀeƌ, seƌǀiĐe, as the teƌŵ is geŶeƌallǇ uŶdeƌstood, also ĐoŵďiŶes the following

related ideas:

• The capability to perform work for another.

• The specification of the work offered for another.

• The offer to perform work for another.

These concepts emphasize a distinction between a capability and the ability to bring that capability

to bear. While both needs and capabilities exist independently of SOA, in SOA, services are the

mechanism by which needs and capabilities are brought together.

SOA is a means of organizing solutions that promotes reuse, growth and interoperability. It is not

itself a solution to domain problems but rather an organizing and delivery paradigm that enables one

to get ŵoƌe ǀalue fƌoŵ use ďoth of Đapaďilities ǁhiĐh aƌe loĐallǇ ͞oǁŶed͟ aŶd those uŶdeƌ the

control of others. It also enables one to express solutions in a way that makes it easier to modify or

evolve the identified solution or to try alternate solutions. SOA does not provide any domain

elements of a solution that do not exist without SOA.

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 64 Public

Note that while an SOA service brings together needs and capabilities, the provider of the underlying

capability may not be the same entity that eventually provides the service which accesses that

capability. In reality, the entity with the domain expertise to create, maintain, and evolve a given

capability may not have the expertise or the desire to create, maintain, and evolve its service access.

The concepts of visibility, interaction, and effect apply directly to services in the same manner as

these were described for the general SOA paradigm. Visibility is promoted through the service

description which contains the information necessary to interact with the service and describes this

in such terms as the service inputs, outputs, and associated semantics. The service description also

conveys what is accomplished when the service is invoked and the conditions for using the service.

In general, entities (people and organizations) offer capabilities and act as service providers. Those

with needs who make use of services are referred to as service consumers. The service description

allows prospective consumers to decide if the service is suitable for their current needs and

establishes whether a consumer satisfies any requirements of the service provider. (Note, service

providers and service consumers are sometimes referred to jointly as service participants.)

Services Visibility

Introduces the possibilities for matching needs to capabilities (and vice versa),

Services Capabilities

Interaction is the activity of using a capability

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 65 Public

Bibliography

Rick Kazman, Claus Nielsen, Klaus Schmid, "Understanding Patterns for System-of- Systems

Integration", CMU/SEI-2013-TR-017 , December 2013

Robert Palmqvist, SAAB, Dr. Lars Schylberg, SAAB, Dr. Allen Jones, The Boeing Company, Legacy

services capability Pattern, V1.10, NCOIC, December 11 2009

"SOA Blueprint: A Toolbox for Architects", Issue LXXI, March/April 2013, Service technology magazine

"Emergency Services Operational Net-Centric Pattern", V1.0, NCOIC, December 2013

Office of the Deputy Under Secretary of Defense for Acquisition and Technology, Systems and

Software Engineering. Systems Engineering Guide for Systems of Systems, Version 1.0. Washington,

DC: ODUSD(A&T)SSE, 2008.

Designing for adaptability and evolution in system of systems engineering (DANSE) "Conceptual and

architecture principles of SoS design and semantic interoperability of systems platform and SoS

design Tool-Net D_8.1.1+D_8.2.1", October 2012

Comprehensive Modelling for Advanced Systems of Systems (Compass), Report on Guidelines for

System Integration for SoS , D21.4, September 2013

Learn REST: A Tutorial http://rest.elkstein.org/

Learn REST: A RESTful Tutorial http://www.restapitutorial.com/

An Introduction to the Resource Description Framework

http://www.dlib.org/dlib/may98/miller/05miller.html

What is service-oriented architecture? An introduction to SOA

http://www.javaworld.com/article/2071889/soa/what-is-service-oriented-architecture.html

http://rest.elkstein.org/
http://www.restapitutorial.com/
http://www.dlib.org/dlib/may98/miller/05miller.html
http://www.javaworld.com/article/2071889/soa/what-is-service-oriented-architecture.html

D42.21 Specification documentation and

deployment of the prototype and final integration platform

©DRIVER Consortium 66 Public

References

[1] DRIVER Deliverable D45.1: Report on Data Interoperability Standards, 2015

[2] DRIVER Deliverable D42.1 - Final report on architecture design, 2015

[3] ACRIMAS project http://www.acrimas.eu/

[4] ODYSSEY project http://research.shu.ac.uk/aces/odyssey/

http://www.acrimas.eu/
http://research.shu.ac.uk/aces/odyssey/

