
 
Driving Innovation in Crisis Management for European Resilience 

D22.12 - DRIVER test bed: Architecture, 

Integration and Orchestration 
 

 

Grant agreement number: 607798 

Start date of the project: 2014-05-01 

Duration: 54 months  

 

Due date of deliverable: 31/07/2015 

Actual submission date: 31/07/2015 

 

Lead Beneficiary: TNO 

Contributing beneficiaries: ATOS, FOI, TCS, TNO, JRC, ARMINES, E-Semble 

 

Keywords: 

 

 

Dissemination level: 

PU ☒ 

PP ☐ 

RE  ☐  

CO  ☐ 

 

Release History 

 

Version Date Description Release by 

0.1 9 Oct 2014 Very First Draft. TNO 

0.2 21 Oct 2014 Upgrade to new DRIVER template and updates 
from telco 16/10/2014. 

TNO 



D22.12 DRIVER-TEST-BED Architecture.docx  

 

©DRIVER Consortium 2 July 2015 

 

0.3 18 Nov 2014 Include Annex B: Survey on scenarios as a place 
holder to collect test bed use cases and 
scenarios to identify required services. Writing 
distributed to partners in telco on 17/11/2014. 

TNO 

0.4 28 Nov 2014 Processed task level peer-review comments 
and several editorials 

All 

1.0 28 Jan 2015 Processed review comments from external 
reviewers. Released as D22.11. 

TNO 

1.1 10 Jun 2015 D22.12 draft version for peer review within 
Task 22.1. 

TNO 

1.2 5 July 2015 D22.12 draft version with peer review 
comments processed. 

TNO 

1.3 7 July 2015 D22.12 version for DRIVER review TNO 

2.0 29 July 2015 Processed review comments from external 
reviewers. Released as D22.12. 

TNO 

 

 



D22.12 DRIVER-TEST-BED Architecture.docx  

©DRIVER Consortium 3 July 2015 

Table of Contents 

Executive Summary ................................................................................................................................. 6 

1 Introduction ..................................................................................................................................... 7 

1.1 Purpose .................................................................................................................................... 7 

1.2 Scope ....................................................................................................................................... 7 

1.3 Test bed objectives .................................................................................................................. 7 

1.4 Architecture development approach ...................................................................................... 8 

1.4.1 Identify services ................................................................................................................... 9 

1.4.2 Specify services .................................................................................................................. 10 

1.4.3 Design services .................................................................................................................. 10 

1.5 Document overview .............................................................................................................. 10 

2 Architecture description ................................................................................................................ 11 

2.1 Architecture viewpoints ........................................................................................................ 11 

2.2 Reference architecture and solution architecture ................................................................ 11 

3 Test bed Architecture ..................................................................................................................... 13 

3.1 Services view ......................................................................................................................... 13 

3.2 Systems view ......................................................................................................................... 16 

3.2.1 Test Bed as a federation of tools ....................................................................................... 16 

3.2.2 Approach for coupling tools .............................................................................................. 18 

3.2.3 Architecture building blocks .............................................................................................. 19 

3.2.4 Orchestration tool ............................................................................................................. 20 

3.2.5 Simulation Data Exchange Model...................................................................................... 22 

3.2.6 Simulation tool .................................................................................................................. 25 

3.2.7 Services to architecture building block traceability .......................................................... 26 

3.3 Standards view ...................................................................................................................... 27 

4 Architecture rationale .................................................................................................................... 28 

5 Conclusion ...................................................................................................................................... 29 

References ............................................................................................................................................. 30 

Annexes ................................................................................................................................................. 31 

Annex A: Terminology ........................................................................................................................... 31 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 4 PU 

List of Tables 

Table 3.1: Main process steps in experimentation. ________________________________________________ 15 

Table 3.2: Cross reference of services to process steps. _____________________________________________ 16 

Table 3.3: Architecture building blocks. _________________________________________________________ 20 

Table 3.4: Service to architecture building block traceability. ________________________________________ 26 

Table 3.5: DRIVER test bed standards. __________________________________________________________ 27 

 

 

List of Figures 

Figure 1.1: System of Interest, CM Solution, and Environment. ________________________________________ 7 

Figure 1.2: Classification of Test Bed models and tools.______________________________________________ 8 

Figure 1.3: Service oriented approach: Identify, Specify, and Design Services. ____________________________ 9 

Figure 2.1: Reference architecture, architecture building block, and solution architecture. ________________ 12 

Figure 3.1: Example of a Test Bed instance. ______________________________________________________ 17 

Figure 3.2: Pairwise coupling. _________________________________________________________________ 18 

Figure 3.3: Service bus coupling. _______________________________________________________________ 18 

Figure 3.4: CIS Gateway. _____________________________________________________________________ 21 

Figure 3.5: Adapter. _________________________________________________________________________ 22 

Figure 3.6: SDEM ground truth (blue) and non-ground truth (green) modules. __________________________ 23 

 

 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 5 PU 

List of Acronyms 

Abbreviation / 

acronym  

Description 

CAP Common Alerting Protocol 

CIS Common Information Space 

CM Crisis Management 

COP Common Operational Picture 

CR Crisis Responders 

EDXL Emergency Data Exchange Language 

FOM Federation Object Model 

HLA High Level Architecture 

HLA-RTI HLA Run Time Infrastructure 

LVC Live, Virtual, Constructive 

NTP Network Time Protocol 

PFIF People Finder Interchange Format 

SDEM Simulation Data Exchange Model 

SOMA Service-Oriented Modelling and Architecture 

SOS Sensor Observation Service 

TSO Tactical Situation Object 

UML Unified Modelling Language 

VPN Virtual Private Network 

WAN Wide Area Network 

 

 

  



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 6 PU 

Executive Summary 

The purpose of this deliverable is to describe the architecture of the DRIVER Test Bed to support 

DRIVER Crises Management and Crises Responders experimentation. The architecture description is 

developed in four iterations identified by the deliverable number D22.1n (where n is 1..4). This 

deliverable concerns the second iteration. 

 

This deliverable describes: 

 the objectives of the Test Bed and the approach for developing the architecture description 

across the four iterations; 

 the architecture viewpoints that are used to describe the architecture of the Test Bed, and 

the distinction between reference architecture (for the Test Bed) and solution architecture 

(as an instantiation of the reference architecture for a certain experiment); 

 the Test Bed architecture using the defined architecture viewpoints; and 

 the rationale for selecting the HLA as reference architecture for connecting Test Bed tools. 

 

The Test Bed architecture is described using the following architecture viewpoints: 

 Services viewpoint: services that the Test Bed generally should provide. 

 Systems viewpoint: Architecture Building Blocks required to implement the desired services. 

 Standards viewpoint: standards that may influence an architecture building block. 

 

The Test Bed adapts the so called service bus coupling approach for connecting simulation tools. This 

coupling approach uses the High Level Architecture (HLA) as simulation architecture. The HLA is a 

general reference architecture for distributed simulation and defines a service bus for connecting 

simulation tools. The service bus is called the HLA Run Time Infrastructure and provides a standard 

application programming interface that is used by Test Bed tools to coordinate their activities, 

exchange data, and progress simulation time. 

 

Architecture building blocks are used to describe the Test Bed architecture and to provide specific 

focus on the logical aspects of the architecture. An architecture building block represents a basic 

element of re-usable functionality, providing support for one or more capabilities that can be 

realized by one or more components or products. An architecture building block will be instantiated 

as required to form a specific solution for a specific DRIVER experiment. A realization or instance of 

an architecture building block is called a solution building block, such as a certain software package. 

 

This deliverable provides initial and preliminary information on the Test Bed architecture. Future 

iterations will take into account information from other DRIVER deliverables as they become 

available, such test bed objectives, methods, models, use cases and scenarios, and experiences from 

the DRIVER experiments. 

 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 7 PU 

1 Introduction 

1.1 Purpose 

This deliverable describes the recommended architecture of the DRIVER Test Bed. The architecture 

description is developed in four iterations identified by the deliverable number D22.1n (where n is 

1..4) and this deliverable concerns the second iteration, with initial and preliminary information on 

test bed services. 

The purpose of this deliverable and subsequent deliverables of follow-on iterations is to describe the 

architecture of the DRIVER Test Bed in order to provide: 

 sufficient information to acquire or develop each DRIVER Test Bed element; 

 sufficient information to integrate and test the DRIVER Test Bed elements; 

 information on the DRIVER Test Bed internal and external interfaces. 

This deliverable focuses on the identification of DRIVER Test Bed services and Test Bed Architecture 

Building Blocks. 

1.2 Scope 

The scope of the architecture description is the DRIVER Test Bed elements, the services that the 

DRIVER Test Bed elements offer, and the interfaces and interface mechanisms they provide to test 

bed operators, simulations tools, and operational systems. 

1.3 Test bed objectives 

The Test Bed objectives are described in the DRIVER deliverables D21.2n (where n is 1..3), titled 

“State of the Art and Objectives for the DRIVER Test-bed”. The top level Test Bed objective is to 

support experimentation, that is, to support the exploration and demonstration of new crisis 

management solutions (CM Solutions) within the crisis management system of systems, for simplicity 

called the “System of Interest”. 

The System of Interest consists of real people, real organizations, operational tools, procedures, etc., 

located in some real world Environment as illustrated in Figure 1.1.  

 

 
Figure 1.1: System of Interest, CM Solution, and Environment. 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 8 PU 

The DRIVER Test Bed provides tools to support experimentation of new DRIVER crisis management 

solutions. The Test Bed provides: 

 Simulation tools that: 

o model the real world environment of the System of Interest, such as terrain, 

weather, infrastructure, flooding, earthquakes, crowds, groups, individuals, traffic, 

and media. These models are typed as “scenario presentation model” and 

“environment model”. 

o model parts of the System of Interest itself, such as first responders, sensors, and 

command and control processes. These models are typed as “CM Actor/System 

model”. 

 Orchestration tools that: 

o orchestrate the execution of simulation tools, 

o facilitate the exchange of simulation data among simulation tools (conform the 

simulation data exchange model and simulation environment agreements), 

o facilitate the exchange of operational data between simulation tools and operational 

tools that are part of the System of Interest, and 

o collect simulation data or operational data for analysis. 

 

The Test Bed models and tools are illustrated in Figure 1.2. Experimentation involves generally 

(amongst many other things) a scenario that defines the initial conditions and time line of significant 

events, and evidence that is collected by running the experiment. 

 

 
Figure 1.2: Classification of Test Bed models and tools. 

1.4 Architecture development approach 

The DRIVER Test Bed architecture description is developed in a number of iterations using a service 

oriented approach. This approach is based on the main steps in SOMA (Service-Oriented Modelling 

and Architecture), a methodology from IBM for the identification, specification and realization of 

services in a service oriented architecture [1]. The main three activities in this methodology are 

Environment

System of Interest

CM Actor/System models

Environment models Scenario Presentation models

Orchestration tools
Test Bed

CM Solution



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 9 PU 

Identify Services, Specify Services, and Design Services. These are illustrated in Figure 1.3 and further 

elaborated below. 

 

 

 
Figure 1.3: Service oriented approach: Identify, Specify, and Design Services. 

The activities Identify Services, Specify Services, and Design Services are performed for each 

deliverable D22.1n (where n is 1..4), where the focus is on services identification in the initial 

deliverable (D22.11), and the focus shifts to services specification and services realization in later 

deliverables. 

The deliverable D21.2n (where n is 1..3) is titled “State of the Art and Objectives for the DRIVER Test-

bed” is one of the inputs to services identification. Similarly, the deliverable D22.2n (where n is 1..4) 

titled “DRIVER-test-bed: Simulation models for Experiment Support”, and the deliverable D22.3n 

(where n is 1..4) titled “DRIVER Reference Database” are inputs to services specification. All these 

inputs converge to their final state over the course of the development of the DRIVER Test Bed 

architecture. 

The above activities are performed by Task 22.2 partners, involving - as needed - other DRIVER 

partners (e.g. from SP4) utilizing the Test Bed in the architecture development discussions. 

1.4.1 Identify services 

The purpose of this activity is to identify candidate services that are involved in the Test Bed. Several 

techniques can be used for identifying services, such as  goal-service modelling (using objectives from 

D21.2n), domain decomposition (a top down approach, using D21.3, D23.1n, D41.21), and existing 

asset analysis (a bottom up approach, using D21.2n, D41.22, and other relevant and further to be 

identified sources such as ACRIMAS). 

Tasks within this activity include: 

 Perform top-down analysis to identify services by using CM experimentation requirements; 

Identify 

Services

Specify Services

Design Services

D21.2n

State of the Art and 

Objectives for the

DRIVER Test-bed

D22.1n

DRIVER-test-bed: 

Architecture,

Integration and 

Orchestration

D22.2n

Simulation models

for Experiment 

Support

D22.3n

Reference 

Database

D41.21

Vision on Response 

2025 report

D41.22

State of the art 

response systems

D23.1n

DRIVER 

Experiment Design 

Manual

D21.3

DRIVER 

Experimentation

Communities of 

Interest

Other sources

D45.1

Interoperability 

Standards



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 10 PU 

 Perform bottom-up analysis to identify services, using the input deliverables; 

 Perform goal-service modelling to identify services, by using the test bed objectives and 

performance measures of the CM experiments to identify required services; 

 Categorize services in a service hierarchy or grouping; 

 Allocate required functionalities to services. 

1.4.2 Specify services 

The purpose of this activity is to elaborate and detail the identified services, and to specify the 

service interfaces. 

Tasks within this activity include: 

 Specify service interfaces; 

 Specify service dependencies on other services; 

 Specify the flow of information among services; 

 Develop service data exchange model; 

 Develop service agreements; 

1.4.3 Design services 

The purpose of this activity is to evaluate service realization options and decide on which DRIVER 

Test Bed element will realize what service participant.  

Tasks within this activity include: 

 Analyse candidate DRIVER Test Bed elements for service realization; 

 Evaluate service realization options; 

 Determine technical feasibility; 

 Record realization decisions; 

 Document DRIVER Test Bed design; 

 Design DRIVER Test Bed elements. 

1.5 Document overview 

The remainder of this document contains the following chapters: 

Chapter 2 provides a description for each architecture viewpoint that is used in this document to 

describe the architecture of the DRIVER Test Bed. 

Chapter 3 describes the architecture of the DRIVER Test Bed using the three viewpoints discussed in 

the previous chapter. 

Chapter 4 provides rationales for architecture decisions made. 

Chapter 5 provides conclusions. 

The remaining parts of this document are the list of references and an annex. The annex contains 

information on terminology. 

  



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 11 PU 

2 Architecture description 

2.1 Architecture viewpoints 

The DRIVER Test Bed architecture description is based on the concepts defined in [2], an 

international standard for the description of an architecture of a system. According to this standard 

the architecture of a system can be described using a variety of viewpoints that together form a set 

of views on the system under consideration and describe how the components of the system interact 

with each other. 

Each architecture viewpoint defines several model kinds to represent aspects of the system. The 

name “model kind” refers to the conventions for a type of modelling, such as Unified Modelling 

Language (UML) activity diagrams for behavioural modelling. An architecture view expresses the 

architecture of a system from the perspective of an architecture viewpoint. An architecture view is 

composed of one or more architecture models that are constructed according to the conventions 

specified by the model kind governing each model. 

The architecture description in this document uses the following viewpoints: 

 Services viewpoint: the services viewpoint is used to describe the services that the DRIVER 

Test Bed generally should provide. 

 System viewpoint: the system viewpoint is used to describe the DRIVER Test Bed architecture 

building blocks required to implement the desired services. 

 Standards viewpoint: the standards viewpoint is used to specify the standards that may 

influence a DRIVER architecture building block. Standards are for example distributed 

simulation standards and simulation data exchange model standards. 

2.2 Reference architecture and solution architecture 

An architecture can be described at different levels of abstraction. Typically the name “reference 

architecture” is used for a more abstract form of architecture. A reference architecture generally 

provides a template solution for a concrete “solution architecture” and can be described using so 

called architecture building blocks. An architecture building block represents a component of the 

reference architecture that can be combined with other building blocks to deliver one or more 

solution architectures. A solution architecture can be viewed as an instantiation of a reference 

architecture, referring to concrete or physical realizations of the building blocks, such as certain 

orchestration tools and simulation tools. Some of these tools will be the same across solution 

architectures (typically the orchestration tools), others will be different per solution architecture 

(typically the simulation tools). The different concepts and their relationships are illustrated in 

Figure 2.1. 

 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 12 PU 

 
Figure 2.1: Reference architecture, architecture building block, and solution architecture. 

In the context of DRIVER, this document (D22.1n) describes the DRIVER Test Bed reference 

architecture and the architecture building blocks. These elements are indicated with “sand” color in 

Figure 2.1; the “grey” colored elements are out of scope of this document. 

The DRIVER Test Bed solution architecture is an instantiation of the DRIVER Test Bed reference 

architecture and addresses the organization of specific simulation and orchestration tools to support 

a certain DRIVER experiment. A list of available simulation and orchestration tools is provided in 

D22.2n (DRIVER-test-bed: Simulation models for Experiment Support). The Test Bed solution 

architecture(s) will be covered in D24.2x (The DRIVER Experimentation Support Tools). 

The DRIVER Test Bed implementation is a concrete (and executable, software) implementation of the 

Test Bed that supports a certain experiment, as constrained by the DRIVER Test Bed solution 

architecture. 

class Architecture

DRIVER Test Bed 

Reference 

Architecture

Architecture 

Building Block

DRIVER Test Bed 

Solution 

Architecture

DRIVER Test Bed 

Implementation

DRIVER 

Experiment

uses

derived from

supports

constrained by



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 13 PU 

3 Test bed Architecture 

This chapter describes the reference architecture of the DRIVER Test Bed using the three viewpoints 

discussed in the previous chapter. 

3.1 Services view 

The services view can be considered as a description of high level requirements, stating the services 

that the Test Bed must provide. An analysis of the input materials (see section 1.4) has yielded the 

following services considered relevant for the Test Bed. The Test Bed must, when it is required by an 

experiment, support the following services: 

1. Environment Representation 

This service provides data on the natural environment, including permanent or semi-

permanent man-made features. This includes data on terrain, weather, urban infrastructure 

such road information and buildings. 

2. Scenario Preparation 

This service is used  to prepare a scenario. This includes a service to suggest models that are 

able to participate in the test bed for the given scenario. This service uses the overview of 

models and related scenarios from D22.2n (DRIVER test-bed: Simulation models for 

Experiment Support) as a database for querying. 

3. Main Event List/Main Incident List Preparation 

This service is used to plan events and incidents that are to be injected into the simulation 

execution during the execution step. 

4. Data Collection 

This service collects data for after action review. This covers simulation data, live data, 

observer data, and execution management data. Observer data may be provided manually 

through a user interface. Live data includes voice, video, and messages from operational 

systems. For an overview of potential live data that are candidate for recording, see D45.1 

(Interoperability Standards). 

5. Main Event List/Main Incident Scripting 

This service scripts events and incidents that were previously planned during scenario 

preparation. The service also allows ad-hoc injection of events or incidents into the 

simulation execution. 

6. Visualisation 

This services visualises ground truth and non-ground truth data. 

 2D GIS map-based representation  

 3D visual representation from multiple points of view (walk, fly 

(drone/helicopter/plane), drive, sail, birds-eye) 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 14 PU 

Note that the visualization service of the test bed may provide more than the Common 

Operational Picture (COP) of a CM tool. For example, ground truth data from simulation 

tools and events that happened. 

7. Simulation management 

This service manages the simulation execution. Sub services are:  

1.7.1. Application management: service to start, stop, and monitor test bed elements 

1.7.2. Simulation initialization:  service to provide initialization data to test bed elements 

1.7.3. Simulation control: service to monitor and control the simulation execution, and to 

manage simulation time (pause, resume, fast forward simulation, etc.). 

8. Simulation communication 

This service enables simulation interoperability between member applications through a run 

time infrastructure1, gateways and bridges, Simulation Data Exchange Model (SDEM)2, and 

operating agreements. The SDEM describes the data that member applications can 

exchange at runtime. 

9. Operational communication 

This service enables interoperability between simulation environment and operational 

systems, e.g. through gateways, data exchange models and operating agreements. For an 

overview of potential live data that are candidate for this service, see D45.1 (Interoperability 

Standards). 

10. Analysis 

This service enables reviewing and analysis of previously recorded data. 

11. Time synchronization 

Service to synchronize time across test bed elements (e.g. NTP service). This service is also 

available to participating tools. 

12. Networking services 

o VPN service for secure communication across WAN(s) 

13. Database management 

o To be determined, input from T22.3 (Reference Database) 

14. Test bed maintenance 

o Save and restore configurations 

o Version management 

o Test-bed status monitoring 

o Issue tracking 

15. Test bed configuration 

o Service to configure the test bed in order to establish a useful test configuration for 

the various experiments. 

 

The identified Test Bed services can be aligned with the main process steps in experimentation (see 

[7]). A summary of the main process steps is provided in Table 3.1. Table 3.2 provides a cross 

                                                           
1
 As example, for HLA this corresponds to the HLA-RTI. 

2
 As example, for HLA this corresponds to the FOM. 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 15 PU 

reference of service to most applicable process step. As can be concluded from this table, Test Bed 

services focus mostly on steps 3 to 5. 

 

Experimentation steps Description 

1. Set goals and outcomes The purpose of this step is to provide a clear formulation of 

the experiment, including a description of the problem to 

be addressed, the objectives to be reached and the 

propositions/hypotheses to be tested. 

2. Select participants The purpose of this step is to identify the participants in the 

experiment. 

3. Prepare experiment The purpose of this step is to develop the experiment and 

prepare for experiment execution. 

4. Running the experiment The purpose of this step is to conduct the experiment and 

collect the resulting data for analysis. 

5. Interpret Evidence The purpose of this step is to analyse and evaluate the data 

acquired during the experiment execution, derive 

conclusions and report the results. 

6. Draw Conclusions The purpose of this step is to draw meaningful conclusions. 

Table 3.1: Main process steps in experimentation. 

 

Experimentation steps 

S
e

t 
g

o
a

ls
 a

n
d

 

o
u

tc
o

m
e

s 

S
e

le
c

t 

p
a

rt
ic

ip
a

n
ts

 

P
re

p
a

re
 

e
x
p

e
ri
m

e
n

t 

R
u

n
n

in
g

 t
h

e
 

e
x
p

e
ri
m

e
n

t 

In
te

rp
re

t 

E
v

id
e

n
c

e
 

D
ra

w
 

C
o

n
c

lu
si

o
n

s 

1. Environment 

Representation 
X X X    

2. Scenario Preparation X X X    

3. Main Event List/Main 

Incident List 

Preparation 

X X X    

4. Data Collection   X X X  

5. Main Event List/Main 

Incident Scripting 
  X X   

6. Visualisation   X X X  



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 16 PU 

Experimentation steps 

S
e

t 
g

o
a

ls
 a

n
d

 

o
u

tc
o

m
e

s 

S
e

le
c

t 

p
a

rt
ic

ip
a

n
ts

 

P
re

p
a

re
 

e
x
p

e
ri
m

e
n

t 

R
u

n
n

in
g

 t
h

e
 

e
x
p

e
ri
m

e
n

t 

In
te

rp
re

t 

E
v

id
e

n
c

e
 

D
ra

w
 

C
o

n
c

lu
si

o
n

s 

7. Simulation 

management 
  X X   

8. Simulation 

communication 
  X X   

9. Operational 

communication 
  X X   

10. Analysis    X X  

11. Time synchronization   X X   

12. Networking services   X X   

13. Database 

management 
  X X X  

14. Test bed 

maintenance 
X X X X X X 

15. Test bed 

configuration 
X X X X X X 

Table 3.2: Cross reference of services to process steps. 

 

3.2 Systems view 

The systems view describes the architectural building blocks. 

3.2.1 Test Bed as a federation of tools 

As described earlier in chapter 2.2, there will be many implementations of the DRIVER Test Bed, each 

supporting one or more experiments. Each implementation has an architecture (called a solution 

architecture), which is derived from the reference architecture as described in this document. Every 

implementation of the Test Bed consists of several (simulation and orchestration) tools, in some way 

organized together to serve the purpose of the experiment. Some Test Bed tools interact with other 

Test Bed tools and are grouped together, some other Test Bed tools are used stand-alone, and yet 

other Test Bed tools interact with operational tools or end-users. In summary, many combinations of 

tools are possible to form what is called in literature a “Live, Virtual and Constructive” (LVC) 

simulation environment. 

When Test Bed tools are integrated together in a group it is called a “federation” of tools. For tools to 

inter-operate in such a federation the data that tools may exchange must be defined, and so called 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 17 PU 

operating agreements must be established in order for tools to correctly operate as a whole. The 

data that can be exchanged between tools is defined in a so called “simulation data exchange 

model”, and the rules under which data is exchanged and tools interoperate are collectively called 

the “simulation environment agreements”. 

In general, the DRIVER Test Bed is defined as a set of interoperating tools, where tools are organized 

in so called federations, along with a simulation data exchange model and set of operating 

agreements that are used as a whole to support the objective of the experiment. Some of these tools 

may be tightly coupled, i.e. exchange simulation data in a time-coherent manner. Other tools may be 

more loosely coupled or may be used independent of any other tool. 

An example of a particular instantiation of the Test Bed Reference Architecture is shown in 

Figure 3.1. This figure shows an object model with three federations, each consisting of a number of 

tools. Colors are used to indicate the kind of tool. Light and dark grey colored tools are orchestration 

and simulation tools respectively. The green colored tools represent operational tools within the 

System of Interest, with which the Test Bed tools may interact. The connections between the tools 

indicate data exchange via some application programming interface. The data that can be exchanged 

amongst tools is described in a simulation data exchange model as will be discussed later. 

 

 
Figure 3.1: Example of a Test Bed instance. 

The Test Bed is generally a federation of federations, where each federation consists of a set of tools. 

A small Test Bed may consist of just one federation with one simulation tool, whereas a large Test 

Bed may consists of many tools, partitioned in one or more federations. 

object Test Bed Federation

Federation 3Federation 2Federation 1

DRIVER Test Bed

X: Orchestration 

Tool

Y: Orchestration 

Tool

A: Simulation Tool

B: Simulation Tool

C: Simulation Tool

D: Simulation Tool

o1: Operational 

Tool

o2: Operational 

Tool

o3: Operational 

Tool

E: Simulation Tool

F: Simulation Tool

o4: Operational 

Tool

Z: Orchestration 

Tool



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 18 PU 

3.2.2 Approach for coupling tools 

Two common approaches for connecting simulation tools in a federation generally found in literature 

are: 

 Pairwise coupling: every tool connects to every other tool as needed. For each connection a 

specific interface may need to be constructed, a dedicated data exchange model defined and 

operating agreements established. This approach may work fine for connecting just a few 

tools, but obviously when the number of tools grow also the number of connections grow 

rapidly! Furthermore, connections between tools may become solution specific, hampering 

on the end tool reuse. 

 

 
Figure 3.2: Pairwise coupling. 

 Service bus coupling: in this approach each tool has a standard interface to a so called 

“service bus”. This bus provides standard simulation services that tools may use to 

coordinate their activities, exchange data, and progress simulation time. Common topologies 

for a service bus are: centralized (communication between connected tools is via a central 

server component) or decentralized (communication is directly between connected tools), or 

a mix of these two. This approach has the advantage of limiting the number connections and 

interfaces and stimulating reuse of tools over time. Regardless of the topology, the tools use 

a common interface to communicate with each other. Often this common interface is 

realized by a software component called “middleware”. 

 

 
Figure 3.3: Service bus coupling. 

The DRIVER Test Bed adapts the service bus coupling approach for connecting simulation tools. The 

coupling approach will use the High Level Architecture (HLA) as simulation architecture (see [8]). The 

HLA is a general reference architecture for distributed simulation and defines a service bus for 

connecting simulation tools (in HLA terminology tools are called “federates”). The service bus is 

called the HLA Run Time Infrastructure (HLA-RTI) and provides a number of services groups that are 

used by a federate to interact with the underlying communication layer: 

1. Federation Management. These services allow for the coordination of federation-wide 

activities throughout the life of a federation execution. Such services include federation 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 19 PU 

execution creation and destruction, federate application joining and resigning, federation 

synchronization points, and save and restore operations. 

2. Declaration Management. These services allow joined federates to specify the types of 

data they will supply to, or receive from, the federation execution. This process is done 

via a set of publication and subscription services along with some related services. 

3. Object Management. These services support the life-cycle activities of the objects and 

interactions used by the joined federates of a federation execution. These services 

provide for registering and discovering object instances, updating and reflecting the 

instance attributes associated with these object instances, deleting or removing object 

instances as well as sending and receiving interactions and other related services. (Note: 

Formal definitions for each of these terms can be found in the definitions clause of all 

three HLA specifications.) 

4. Ownership Management. These services are used to establish a specific joined federate’s 

privilege to provide values for an object instance attribute as well as to facilitate dynamic 

transfer of this privilege (ownership) to other joined federates during a federation 

execution. 

5. Time Management. These services allow joined federates to operate with a logical 

concept of time and to jointly maintain a distributed virtual clock. These services support 

discrete event simulations and assurance of causal ordering among events. 

6. Data Distribution Management. These services allow joined federates to further specify 

the distribution conditions (beyond those provided via Declaration Management 

services) for the specific data they send or ask to receive during a federation execution. 

The RTI uses this information to route data from producers to consumers in a more 

tailored manner. 

7. Support Services. This group includes miscellaneous services utilized by joined federates 

for performing such actions as name-to-handle and handle-to-name transformations, the 

setting of advisory switches, region manipulations, and RTI start-up and shutdown. 

 

The HLA is not further elaborated in this document and the reader is referred to references [8], [9] 

and [10], and other references that can be found on the public internet. 

3.2.3 Architecture building blocks 

This chapter describes the architecture building blocks that can be used for constructing a Test Bed 

solution architecture and Test Bed implementation. Referring to [17] from the Open Group, an 

architecture building block represents a basic element of re-usable functionality, providing support 

for one or more capabilities, that can be realized by one or more components or products. The HLA is 

a reference architecture for connecting simulation tools in a federation of tools and architecture 

building blocks are used to provide specific focus on the logical aspects of the Test Bed reference 

architecture. An architecture building block will be instantiated as required to form a specific solution 

for a specific DRIVER experiment. A realization or instance of an architecture building block is called a 

solution building block, such as a certain software package. 

The following table Table 3.3. provides an overview of the architecture building blocks, grouped by 

type of tool that the building block is applicable to. 

 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 20 PU 

Grouping Architecture Building Block 

Orchestration tool 

Infrastructure Building Block 

Integration Building Block 

Monitoring and Control Building Block 

Simulation tool 

Scenario Presentation Model and Environment 

Model Building Block 

CM System/Actor model Building Block 

Simulation Data Exchange Model 
Ground truth SDEM Building Block 

Non-ground truth SDEM Building Block 

Table 3.3: Architecture building blocks. 

The following sections describe the architecture building blocks in more detail. 

3.2.4 Orchestration tool 

3.2.4.1 Infrastructure Building Block 

Simulation Run Time Infrastructure 

One of the most important architecture building blocks is the simulation Run Time Infrastructure. A 

simulation Run Time Infrastructure is generally an infrastructure that allows disparate tools to 

exchange simulation data. In general such an infrastructure provides software services for tools to 

coordinate their activities, data exchange and simulation time advancement. This building block will 

be realized by an HLA 1516-2010 compliant HLA-RTI implementation. Both commercial and open 

source (partial) HLA-RTI implementations are available. In HLA the tools that are connected by the 

run time infrastructure are called federates. 

 

Time Server 

A time server is an Infrastructure Building Block for synchronizing the system clocks in a computer 

network via NTP. Input and output data of tools is often time related. By using a synchronized clock it 

will be easier to correlate data from different tools. The Time Server will also be accessible by 

operational tools.  

Note that there are generally two concepts of time w.r.t. a simulation: logical time and wall-clock 

time. The wall-clock time across different PCs should be synchronized via the Time Server. The logical 

time is whatever the tools within a certain Test Bed Implementation have agreed on, and is 

coordinated by the Simulation Run Time Infrastructure. Thus simulation tools that coordinate their 

time advancement outside of the simulation Run Time Infrastructure should use a synchronized wall-

clock. 

3.2.4.2 Integration Building Block 

An Integration Building Block is used to connect simulation tools with operational tools, or to 

integrate legacy tools into the Test Bed. 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 21 PU 

 

Gateway and Adapter are two types of Integration Building Block. The names gateway, bridge and 

adapter are quite often used interchangeably. The word bridge is often misused in literature, 

sometimes referring to a gateway and sometimes to an adapter. In this document we use the 

following definitions: 

 A gateway is an orchestration tool that is part of two architectures (for example, the HLA and 

the CIS) and translates data and services between both architectures. A gateway will be the 

typical solution for connecting simulation tools to the Common Information Space (CIS). A 

gateway that connects to the CIS is called “CIS Gateway”. 

 An adapter is an orchestration tool that provides a set of software services that legacy tools 

or models can use to integrate with the simulation Run Time Infrastructure. An adapter will 

be the common solution for the integration of legacy tools with the Test Bed. 

 

Figure 3.4 shows the structure of the CIS Gateway. The CIS Gateway is both an HLA federate that 

conforms to the Test Bed simulation environment agreements and a CIS application that conforms to 

the CIS agreements. It has the following components: a Local RTI Component (LRC) to communicate 

with the other federates within the federation, a CIS Connector to communicate with other 

applications within the CIS, and a mapper that maps data and services between the LRC and CIS 

Connector. The CIS Connector is a part of the CIS Adapter and is described in D42.1 (Final report on 

architecture design) and D42.21 (Specification documentation and deployment of the prototype and 

final integration platform). Note that there may be multiple CIS Gateway instances in a particular 

Test Bed implementation, each responsible for translating certain data defined in different FOM 

modules, such as Common Alerting Protocol (CAP) messages or Tactical Situation Object (TSO) data. 

 

 
Figure 3.4: CIS Gateway. 

A simulation tool may also communicate directly with the CIS. In that case the simulation tool 

includes a CIS connector. However, this variant is not an Integration Building Block, but a simulation 

tool type building block (see 3.2.6). 

 

Figure 3.5 shows the structure of a simulation tool that uses an adapter to  integrate with the 

simulation Run Time Infrastructure. An adapter typically provides a simple API dedicated to a 

particular model or class of models. An adapter may be FOM module specific (and generated by a 

code-generation tool) or may offer a subset of the LRC API to the simulation model. There are 

therefore different adapter instances, offering different APIs to simulation models. 

class Gateway

CIS Gateway

CIS 

Connector

LRC Data and Serv ices 

Mapper



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 22 PU 

 

 
Figure 3.5: Adapter. 

3.2.4.3 Monitoring and Control Building Block 

The Monitoring and Control Building Block is a building block used to monitor and control Test Bed 

tools as well as to monitor and control the simulation performed by these tools. The following types 

of Monitoring and Control Building Block are distinguished: Controller, Data Viewer, and Data 

Recorder: 

 Data Viewer: visualizes simulation data, often on a 2D map. Simulation data can be both 

ground truth data and non-ground truth data. 

 Data Recorder: records simulation data, for later analysis. 

 Application Controller: controls the state of Test Bed tools (e.g. start, stop), and  

 Scenario Controller: controls the state of the simulation execution. 

3.2.5 Simulation Data Exchange Model 

3.2.5.1 SDEM Building Block 

The Simulation Data Exchange Model (SDEM) is a specification of the information (a data model) that 

is exchanged run-time between Test Bed tools. For HLA the SDEM corresponds to the HLA Federation 

Object Model (HLA FOM). The HLA FOM describes amongst others the object classes, object class 

attributes, object class hierarchy, interaction classes and interaction class parameters for a 

simulation environment. 

 

With the latest HLA standard (see [8]) logically related classes can be grouped in so called FOM 

modules, enabling component oriented development and stimulating the reuse of modules. The 

modularization of the FOM enables amongst others: 

 Agreements related to a certain FOM module can be re-used between many federations; 

 Extensions to a reference FOM can be put in a FOM module to avoid modifying standard 

FOMs; 

 FOMs can become more agile as it easy to add a new or change an existing FOM module that 

only some federates use; 

 A service oriented approach is possible where a federate defines the provided service data in 

a FOM module; 

class Adapter

Simulation Tool

LRC Simulation ModelAdapter



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 23 PU 

 A more decentralized approach with self-organizing federates can be applied: only federates 

that share the same FOM module exchange data and need to make agreements between 

each other. 

 

An example of an SDEM with several modules is provided in Figure 3.6. Each module is depicted as a 

UML package and a dependency association is used where one module extends another module. A 

colour is used to indicate the kind of data that is modelled in the package: blue for ground truth data 

and green for non-ground truth data. As an example, some of the modules contain object classes. 

 

 
Figure 3.6: SDEM ground truth (blue) and non-ground truth (green) modules. 

The SDEM schema defines the structure of an SDEM, similar to an XSD (a schema) for an XML file. For 

HLA there is a standard schema defined, called the Object Model Template (see [10]). This schema 

enables an object oriented and modular design of an HLA Federation Object Model. The advantage of 

using an SDEM schema is that it enables automation by tools, such as SDEM editing, code generation 

and run-time checks against an SDEM. 

 

Although the SDEM represents an agreement among tools as to how runtime interaction will take 

place, there are other operating agreements that must be reached and that are not documented in 

the SDEM. Such agreements are necessary to establish a fully consistent, interoperable, simulation 

environment. There are many different types of agreements, for instance, agreements on 

initialization procedures for tools, synchronization points between tools, save/restore policies, 

progression of simulation time, object ownership, attribute update policies, security procedures, as 

well as algorithms that must be common across the Test Bed to achieve valid interactions among all 

tools. Many of these agreements will be however be solution specific and will not be described in this 

document. 

 

A general structure for capturing (solution specific) agreements is the Federation Agreements 

Template (FEAT) (see [12]). The FEAT decomposes operating (federation) agreements in the following 

categories: 

1. Metadata: Information about the federation agreements itself.  

cmp Test Bed SDEMs

«ground truth»

Simulation Management Module

«ground truth»

Physical Module

+ Lifeform

+ Platform

«non-ground truth»

CAP Module

+ CAP message

Base Module

«ground truth»

Communication Module



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 24 PU 

2. Design: Agreements about the basic purpose and design of the federation.  

3. Execution: Technical and process agreements affecting execution of the federation.  

4. Management: Systems/software engineering and project management agreements.  

5. Data: Agreements about structure, values, and semantics of data to be exchanged during 

federation execution.  

6. Infrastructure: Technical agreements about hardware, software, network protocols, and 

processes for implementing the infrastructure to support federation execution.  

7. Modeling: Agreements to be implemented in simulation tools that semantically affect the 

current execution of the federation.  

8. Variances: Exceptions to the federation agreements deemed necessary during 

integration and testing.  

 

The FEAT is a template (XML schema) that can be leveraged to categorize simulation environment 

agreements (either using this schema directly, or using this schema to provide a structure for a 

textual format in an MS Word document). 

 

Examples of simulation environment Execution agreements are: 

 Execution states: agreements on federation execution states, e.g. initialization, saving, 

shutdown. 

 Time management strategy: agreements on how simulation time will be advanced in the 

federation. That is: softRealTime, hardRealTime, scaledRealTime or asFastAsPossible. And 

per member application the strategy used, i.e. timeStepped, eventDriven, 

optimisticSynchronization, or  paced with an external source. 

 Update rates: agreements on how often member applications agree to update states; this 

may be static or dynamic. Might be upper/lower limits or set rates.  Rates may be set for the 

entire federation, member applications, or object classes. 

 

And examples of a Modeling agreements are: 

 Effects adjudication: effects adjudication agreements ensure a 'fair fight' by specifying what 

component has the authority to determine the outcome or effect of an interaction between 

member applications, e.g. “shooter” (or the one initiating the effect) adjudicates, 'target' (the 

one the effect is perpetrated on) and, 'server' (some 3rd party member application). 

 Coordinate systems: reference to authoritative coordinate system representations. 

3.2.5.2 Ground truth and non-ground truth SDEM Building Block 

The previous section described the SDEM and associated operating agreements as a general 

architecture Building Block. However, it is important to differentiate between two kinds of SDEM 

Building Block: 

 Ground truth SDEM Building Block; 

 Non-ground truth SDEM Building Block. 

 

Where: 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 25 PU 

 Ground truth: The actual facts of a situation, without errors introduced by sensors or human 

perception and judgment. 

 Non-ground truth: consisting of: 

o Perceived truth: data perceived by humans or sensors, including errors due to 

perception or judgment, 

o Other non-ground truth like orders or commands to persons or between systems. 

 

The ground truth SDEM Building Block specifies ground truth data and can as such only be used to 

describe the data exchange between Test Bed tools (for example entity state data). 

 

The non-ground truth SDEM Building Block specifies non-ground truth data. This can be data that is 

exchanged among Test Bed Tools, or between operational tools and Test Bed Tools via a gateway (for 

example CAP messages). 

 

Ground truth data is data that resides inside the simulation as “the truth” and is used by simulation 

tools for modeling for example the environment of the SOI. This data is not exchanged with 

operational tools. Environment data that is used by operational tools such as terrain, number of 

inhabitants, location of critical infrastructure, hydrographic data, etc. should be considered as non-

ground truth data. This is non-ground truth data because the number of inhabitants or locations of 

infrastructure may differ from the actual “truth” data used inside the simulation. Non-ground truth 

data can be exchanged between simulation tools and operational tools. Note however that in many 

instances the same data will be used for both ground truth and non-ground truth because there is no 

other data available. But in principle these are different and are modeled as such. 

3.2.6 Simulation tool 

The available simulation tools and models (Scenario Presentation Model,  CM System/Actor model, 

and Environment Model) are described in D22.2n (DRIVER-test-bed: Simulation models for 

Experiment Support) and are not further elaborated here. 

3.2.6.1 Scenario Presentation Model and Environment Model Building Block 

This building block represents a simulation tool that models the real world environment of the 

System of Interest, such as terrain, weather, infrastructure, flooding, earthquakes, crowds, groups, 

individuals, traffic, and media. These models are typed as “scenario presentation model” and 

“environment model”. 

3.2.6.2 CM System/Actor model Building Block 

This building block represents a simulation tool that models parts of the System of Interest itself, 

such as first responders, sensors, and command and control processes. These models are typed as 

“CM Actor/System model”. 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 26 PU 

3.2.7 Services to architecture building block traceability 

Architecture Building Block > 

In
fr

as
tr

u
ct

u
re

 

B
u

ild
in

g 
B

lo
ck

 

In
te

gr
at

io
n

 
B

u
ild

in
g 

B
lo

ck
 

M
o

n
it

o
ri

n
g 

an
d

 
C

o
n

tr
o

l B
u

ild
in

g 

B
lo

ck
 

SD
EM

 B
u

ild
in

g 
B

lo
ck

 

Sc
en

ar
io

 

P
re

se
n

ta
ti

o
n

 
M

o
d

el
 a

n
d

 
En

vi
ro

n
m

en
t 

M
o

d
el

 B
u

ild
in

g 

B
lo

ck
 

C
M

 S
ys

te
m

/A
ct

o
r 

m
o

d
el

 B
u

ild
in

g 
B

lo
ck

 

1. Environment 

Representation 
    X  

2. Scenario Preparation     X X 

3. Main Event List/Main 

Incident List Preparation 
    X X 

4. Data Collection   X    

5. Main Event List/Main 

Incident Scripting 
    X X 

6. Visualisation   X    

7. Simulation management X X X X   

8. Simulation 

communication 
X   X   

9. Operational 

communication 
X   X  ?? 

10. Analysis   X    

11. Time synchronization X      

12. Networking services X      

13. Database management   X    

14. Test bed maintenance       

15. Test bed configuration       

Table 3.4: Service to architecture building block traceability. 

  



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 27 PU 

3.3 Standards view 

This standards view lists the applicable standards. Applicable standards for the DRIVER Test Bed are 

provided in the table below. 

 

Standard Description 

Service/ 

Component 

Name 

CAP Common Alerting Protocol 

See D45.1 (Interoperability Standards) 

Simulation Data 

Exchange Model 

EDXL Emergency Data Exchange Language, in particular EDXL-DE 

as the container for EDXL messages 

See D45.1 (Interoperability Standards) 

Simulation Data 

Exchange Model 

IEEE 1516.1-2010 IEEE Standard for M&S 

High Level Architecture (HLA) – Federate Interface 

Specification 

Simulation Run 

Time 

Infrastructure 

IEEE 1516.2-2010 IEEE Standard for M&S 

High Level Architecture (HLA) – Object Model Template 

(OMT) Specification 

Simulation Data 

Exchange Model 

IEEE 1516-2010 IEEE Standard for M&S 

High Level Architecture (HLA) – Framework and rules 

Test Bed tool 

RFC 5905 Network Time Protocol Version 4: Protocol and Algorithms 

Specification 

NTP Server 

TSO Tactical Situation Object 

See D45.1 (Interoperability Standards) 

Simulation Data 

Exchange Model 

Table 3.5: DRIVER test bed standards. 

 

 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 28 PU 

4 Architecture rationale 

A decision in this deliverable is the selection of the HLA as simulation architecture for coupling Test 

Bed orchestration and simulation tools. Besides the HLA-RTI there are several other interoperability 

technologies that provide means for exchanging data between applications. It is possible to create 

simple data connections between applications using for example UDP/IP or TCP/IP, Simple Object 

Access Protocol (SOAP) or Representational State Transfer (REST). Or it is possible to create 

connections via message oriented middleware and protocols like the Advanced Message Queuing 

Protocol (AMQP) and the Data Distribution Service (DDS). From a low-level technical perspective this 

can always be seen as technology x can be replaced with technology y. Or that technology x can be 

implemented using technology y. As such, each of these technologies may provide a suitable solution 

when just simple services are needed, such as data transfer services. However, when connecting 

simulation tools additional, more advanced, simulation services might be needed. For example  

services for time management or services for ownership management. The HLA is a complete 

simulation architecture that provides basic data transfer services, as well as more advanced services 

used in simulations. Besides, several simulation tools used by DRIVER partners are HLA based. 

Over the course of the DRIVER project several (orchestration and simulation) tools will be brought 

together in a Test Bed to support experimentation. Currently the HLA will be the single architecture 

of choice for connecting these tools. However, the need for complementary architectures will be 

closely monitored. Potentially resulting in a multi-architecture simulation environment. 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 29 PU 

5 Conclusion 

This deliverable described the reference architecture of the Test Bed in terms of required services, 

architecture building blocks and applicable standards. The architecture is described using three 

architecture viewpoints (services viewpoint, systems viewpoint and standards viewpoint), each 

proving specific focus on aspects of the architecture. 

There will be several implementations of the DRIVER Test Bed, each supporting one or more 

experiments. Each implementation has an architecture (called a solution architecture), which is 

derived from the Test Bed reference architecture as described in this document. 

The HLA is a general reference architecture for distributed simulation and is selected as the reference 

architecture for connecting Test Bed tools. This document defined various architecture building 

blocks for constructing a Test Bed solution architecture and Test Bed implementation. Architecture 

building blocks include Infrastructure Building Block (e.g. HLA-RTI), Integration Building Block (e.g. 

gateway to operational tools), and Simulation Data Exchange Building Block (e.g. object model to 

describe the data that can be exchanged between Test Bed tools). 

As further information will become available from other DRIVER deliverables and on-going 

experiments, the architecture description need to be updated. In particular the description needs to 

be updated with: 

 Information on simulation data exchange models and simulation environment agreements; 

o Standard simulation data exchange models and agreements need to be defined to 

facilitate the re-use of Test Bed tools within different Test Bed implementations. 

o References to simulation and orchestration tools (in D22.2x) that support these data 

exchange models and agreements. 

 Information on orchestration tools, in particular gateways and adaptors to operational tools; 

o Standard gateways and adaptors need to be defined to facilitate the coupling of Test 

Bed tools with operational tools. 

 Information on environmental data and other data, such standards for terrain data, sensor 

data (Sensor Observation Service, SOS) and missing person data (People Finder Interchange 

Format, PFIF) 

o Standard formats need to be agreed on to facilitate the exchange of data between 

Test Bed tools. 

 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 30 PU 

References 

[1] Norbert Bieberstein et al, Executing SOA: A Practical Guide for the Service-Oriented Architect, 
IBM Press, 2008. 

[2] International Standard, Systems and software engineering - Architecture description, ISO/IEC 
42010, IEEE Standard 42010-2011. 

[3] Object Management Group, Service Oriented Architecture Modeling Language (SoaML), 
Version 1.0.1, May 2012. 

[4] Wikipedia, SoaML, http://en.wikipedia.org/wiki/SoaML. 

[5] Object Management Group, Systems Modeling Language (SysML), Version 1.3, June 2012. 

[6] Wikipedia, SysML, http://en.wikipedia.org/wiki/Systems_Modeling_Language. 

[7] D23.11 – DRIVER Experiment Design Manual. 

[8] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) – Framework 
and Rules (IEEE 1516-2010). 

[9] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) – Federate 
Interface Specification (IEEE 1516.1-2010). 

[10] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) – Object 
Model Template (IEEE 1516.2-2010). 

[11] IEEE Recommended Practice for Distributed Simulation Engineering and Execution Process 
(DSEEP) (IEEE 1730-2010). 

[12] SISO Federation Engineering Agreements Template (FEAT) Programmer's Reference Guide, 
http://www.sisostds.org/FEATProgrammersReference. 

[13] SEDRIS Glossary, http://www.sedris.org/glossary.htm. 

[14] Institute of Electrical and Electronics Engineers, IEEE Recommended Practice for Distributed 
Simulation Engineering and Execution Process (DSEEP), IEEE Standard 1730-2010. 

[15] Institute of Electrical and Electronics Engineers, Systems and software engineering - 
Architecture description, IEEE Standard 42010-2011. 

[16] International Standard, Systems and software engineering - System life cycle processes, ISO/IEC 
15288, IEEE Standard 15288-2008. 

[17] Open Group Standard, SOA Reference Architecture (C119), The Open Group, 2011. 

[18] SISO draft standard, Standard for Gateway Description Language, SISO-STD-000-00-2014, 10 
September 2014. 

[19] DoD Modelling and Simulation (M&S) Glossary, December 2010. 

http://en.wikipedia.org/wiki/Systems_Modeling_Language


D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 31 PU 

Annexes 

 

Annex A: Terminology 

This annex defines the most relevant terms that are used throughout this document. Where possible 

authoritative sources are used in defining terms. 

 

Term Description 

Architecture Fundamental concepts or properties of a system in its 

environment embodied in its elements, relationships, and in the 

principles of its design and evolution. 

See [16]. 

Architecture building block An Architecture building block represents a basic element of re-

usable functionality, providing support for one or more 

capabilities, that can be realized by one or more components or 

products. 

See [17]. 

Bridge Refers to a translator to link environments that use the same 

architecture. For example a bridge between two HLA federations. 

Based on definition in [18]. 

Environmental representation An authoritative representation of all or part of the natural 

environment, including permanent or semi-permanent man-

made features. 

See [13]. 

Gateway Refers to a translator to link environments that use different 

architectures. 

Based on definition in [18]. 

 

Typically used between simulation environment and operational 

environment. 



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 32 PU 

Ground truth data The actual facts of a situation, without possible errors introduced 

by sensors or human perception and judgment. 

See [19]. 

 

As opposed to non-ground truth data. 

Member application An application that is serving some defined role within a 

simulation environment. This can include live, virtual, or 

constructive simulation assets, or can be supporting utility 

programs such as data loggers or visualization tools. 

See [14]. 

 

A member application may contain multiple simulation models. 

 

In the context of DRIVER a member application is either an 

orchestration tool or a simulation tool. 

Model A physical, mathematical, or otherwise logical representation of a 

system, entity, phenomenon, or process. 

See [19]. 

Non-ground truth data Data consisting of: 

 Perceived truth: data perceived by humans or sensors, 

including possible errors due to perception or judgment 

 Other non-ground truth like orders or commands to 

persons or between systems. 

 

As opposed to ground truth data. 

Operational architecture Architecture of the operational environment. See Architecture 

and Operational environment. 

Operational data Non-ground truth data exchanged between operational systems 

within an operational environment. 

Operational environment Collection of operational systems, used as a whole to achieve 

some objective. 

Operational system A real world system, such as a C4I system. 

Operational tool See operational system.  



D22.12 DRIVER-TEST-BED ARCHITECTURE.docx  

 

©DRIVER Consortium 33 PU 

Orchestration tool Is a member application that orchestrates the execution of 

simulation tools, facilitates the exchange of simulation data 

among simulation tools and between simulation tools and 

operational tools, and collects data for analysis. 

 

See also: member application. 

Scenario An initial set of condition and timeline of significant events 

imposed on trainees or systems to achieve exercise objectives. 

See [19]. 

Simulation data exchange 

model 

A specification defining the information exchanged at runtime to 

achieve a given set of simulation objectives. This includes class 

relationships, data structures, parameters, and other relevant 

information. 

See [14]. 

Simulation architecture Architecture of the simulation environment. See Architecture and 

Simulation environment. 

Simulation data Ground truth or non-ground truth data exchanged between 

member applications within a simulation environment. 

Simulation environment A named set of member applications along with a common 

simulation data exchange model (SDEM) and set of agreements 

that are used as a whole to achieve some specific objective. 

See [14]. 

Simulation tool Is a member application that models the real world environment 

of the System of Interest and models parts of the System of 

Interest itself. 

 

See also: member application. 

Test bed element A member of a set of elements that constitutes the test bed. 

Based on definition in [16]. 

 

For example: member application, gateway, bridge, run time 

infrastructure. 

 


